Optimal. Leaf size=23 \[ \frac {5}{e^{-1+x+\frac {4 \left (2+x^4\right )}{x}}+\frac {1}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 1.71, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5 e^2+e^{1+\frac {8+x^2+4 x^4}{x}} \left (40-5 x^2-60 x^4\right )}{e^2+2 e^{1+\frac {8+x^2+4 x^4}{x}} x+e^{\frac {2 \left (8+x^2+4 x^4\right )}{x}} x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 e \left (e-e^{\frac {8}{x}+x+4 x^3} \left (-8+x^2+12 x^4\right )\right )}{\left (e+e^{\frac {8}{x}+x+4 x^3} x\right )^2} \, dx\\ &=(5 e) \int \frac {e-e^{\frac {8}{x}+x+4 x^3} \left (-8+x^2+12 x^4\right )}{\left (e+e^{\frac {8}{x}+x+4 x^3} x\right )^2} \, dx\\ &=(5 e) \int \left (-\frac {-8+x^2+12 x^4}{x \left (e+e^{\frac {8}{x}+x+4 x^3} x\right )}+\frac {e \left (-8+x+x^2+12 x^4\right )}{x \left (e+e^{\frac {8}{x}+x+4 x^3} x\right )^2}\right ) \, dx\\ &=-\left ((5 e) \int \frac {-8+x^2+12 x^4}{x \left (e+e^{\frac {8}{x}+x+4 x^3} x\right )} \, dx\right )+\left (5 e^2\right ) \int \frac {-8+x+x^2+12 x^4}{x \left (e+e^{\frac {8}{x}+x+4 x^3} x\right )^2} \, dx\\ &=-\left ((5 e) \int \left (-\frac {8}{x \left (e+e^{\frac {8}{x}+x+4 x^3} x\right )}+\frac {x}{e+e^{\frac {8}{x}+x+4 x^3} x}+\frac {12 x^3}{e+e^{\frac {8}{x}+x+4 x^3} x}\right ) \, dx\right )+\left (5 e^2\right ) \int \left (\frac {1}{\left (e+e^{\frac {8}{x}+x+4 x^3} x\right )^2}-\frac {8}{x \left (e+e^{\frac {8}{x}+x+4 x^3} x\right )^2}+\frac {x}{\left (e+e^{\frac {8}{x}+x+4 x^3} x\right )^2}+\frac {12 x^3}{\left (e+e^{\frac {8}{x}+x+4 x^3} x\right )^2}\right ) \, dx\\ &=-\left ((5 e) \int \frac {x}{e+e^{\frac {8}{x}+x+4 x^3} x} \, dx\right )+(40 e) \int \frac {1}{x \left (e+e^{\frac {8}{x}+x+4 x^3} x\right )} \, dx-(60 e) \int \frac {x^3}{e+e^{\frac {8}{x}+x+4 x^3} x} \, dx+\left (5 e^2\right ) \int \frac {1}{\left (e+e^{\frac {8}{x}+x+4 x^3} x\right )^2} \, dx+\left (5 e^2\right ) \int \frac {x}{\left (e+e^{\frac {8}{x}+x+4 x^3} x\right )^2} \, dx-\left (40 e^2\right ) \int \frac {1}{x \left (e+e^{\frac {8}{x}+x+4 x^3} x\right )^2} \, dx+\left (60 e^2\right ) \int \frac {x^3}{\left (e+e^{\frac {8}{x}+x+4 x^3} x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.40, size = 24, normalized size = 1.04 \begin {gather*} \frac {5 e x}{e+e^{\frac {8}{x}+x+4 x^3} x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 28, normalized size = 1.22 \begin {gather*} \frac {5 \, x e^{2}}{x e^{\left (\frac {4 \, x^{4} + x^{2} + x + 8}{x}\right )} + e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.41, size = 27, normalized size = 1.17 \begin {gather*} \frac {5 \, x e}{x e^{\left (\frac {4 \, x^{4} + x^{2} + 8}{x}\right )} + e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 28, normalized size = 1.22
method | result | size |
norman | \(\frac {5 x \,{\mathrm e}}{x \,{\mathrm e}^{\frac {4 x^{4}+x^{2}+8}{x}}+{\mathrm e}}\) | \(28\) |
risch | \(\frac {5 x \,{\mathrm e}}{x \,{\mathrm e}^{\frac {4 x^{4}+x^{2}+8}{x}}+{\mathrm e}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 25, normalized size = 1.09 \begin {gather*} \frac {5 \, x e}{x e^{\left (4 \, x^{3} + x + \frac {8}{x}\right )} + e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.13, size = 26, normalized size = 1.13 \begin {gather*} \frac {5\,x\,\mathrm {e}}{\mathrm {e}+x\,{\mathrm {e}}^{4\,x^3}\,{\mathrm {e}}^{8/x}\,{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 24, normalized size = 1.04 \begin {gather*} \frac {5 e x}{x e^{\frac {4 x^{4} + x^{2} + 8}{x}} + e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________