Optimal. Leaf size=11 \[ \frac {\log (2 x)}{\log (-x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 11, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {6742, 2302, 29, 30, 2366} \begin {gather*} \frac {\log (2 x)}{\log (-x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 30
Rule 2302
Rule 2366
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{x \log (-x)}-\frac {\log (2 x)}{x \log ^2(-x)}\right ) \, dx\\ &=\int \frac {1}{x \log (-x)} \, dx-\int \frac {\log (2 x)}{x \log ^2(-x)} \, dx\\ &=\frac {\log (2 x)}{\log (-x)}-\int \frac {1}{x \log (-x)} \, dx+\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (-x)\right )\\ &=\frac {\log (2 x)}{\log (-x)}+\log (\log (-x))-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (-x)\right )\\ &=\frac {\log (2 x)}{\log (-x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 19, normalized size = 1.73 \begin {gather*} -\frac {\log (-x)-\log (2 x)}{\log (-x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.20, size = 9, normalized size = 0.82 \begin {gather*} \frac {\log \relax (2)}{\log \left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 18, normalized size = 1.64 \begin {gather*} \frac {\log \left (2 \, x\right ) - \log \left (-x\right )}{\log \left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 12, normalized size = 1.09
method | result | size |
norman | \(\frac {\ln \left (2 x \right )}{\ln \left (-x \right )}\) | \(12\) |
default | \(\frac {\ln \relax (2)}{\ln \left (-x \right )}+\frac {\ln \relax (x )}{\ln \left (-x \right )}\) | \(20\) |
risch | \(-\frac {2 i \left (-\ln \relax (2)+i \pi +i \pi \mathrm {csgn}\left (i x \right )^{2} \left (\mathrm {csgn}\left (i x \right )-1\right )\right )}{2 \pi \mathrm {csgn}\left (i x \right )^{2}-2 \pi \mathrm {csgn}\left (i x \right )^{3}-2 \pi +2 i \ln \relax (x )}\) | \(62\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 11, normalized size = 1.00 \begin {gather*} \frac {\log \left (2 \, x\right )}{\log \left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.03, size = 11, normalized size = 1.00 \begin {gather*} \frac {\ln \left (2\,x\right )}{\ln \left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [C] time = 0.22, size = 10, normalized size = 0.91 \begin {gather*} \frac {\log {\relax (2 )} + i \pi }{\log {\left (- x \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________