Optimal. Leaf size=20 \[ \log \left (\frac {2}{(3+x) \left (-5-e^4 x^2\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.031, Rules used = {1587} \begin {gather*} -\log \left (e^4 \left (x^2+3 x\right ) x+5 x+15\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1587
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\log \left (15+5 x+e^4 x \left (3 x+x^2\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 18, normalized size = 0.90 \begin {gather*} -\log \left (15+5 x+e^4 x^2 (3+x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.23, size = 20, normalized size = 1.00 \begin {gather*} -\log \left ({\left (x^{3} + 3 \, x^{2}\right )} e^{4} + 5 \, x + 15\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 19, normalized size = 0.95 \begin {gather*} -\log \left (x^{2} e^{4} + 5\right ) - \log \left ({\left | x + 3 \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 19, normalized size = 0.95
method | result | size |
norman | \(-\ln \left (3+x \right )-\ln \left (x^{2} {\mathrm e}^{4}+5\right )\) | \(19\) |
default | \(-\ln \left (x^{3} {\mathrm e}^{4}+3 x^{2} {\mathrm e}^{4}+5 x +15\right )\) | \(22\) |
risch | \(-\ln \left (x^{3} {\mathrm e}^{4}+3 x^{2} {\mathrm e}^{4}+5 x +15\right )\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.60, size = 18, normalized size = 0.90 \begin {gather*} -\log \left (x^{2} e^{4} + 5\right ) - \log \left (x + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.17, size = 15, normalized size = 0.75 \begin {gather*} -\ln \left (\left (x+3\right )\,\left ({\mathrm {e}}^4\,x^2+5\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 22, normalized size = 1.10 \begin {gather*} - \log {\left (x^{3} e^{4} + 3 x^{2} e^{4} + 5 x + 15 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________