Optimal. Leaf size=29 \[ -\frac {7}{4}+x-\frac {e^{e^x}}{-e^{\frac {1}{16 x^2}+x}+x} \]
________________________________________________________________________________________
Rubi [F] time = 4.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8 e^{\frac {1+16 x^3}{8 x^2}} x^3-16 e^{\frac {1+16 x^3}{16 x^2}} x^4+8 x^5+e^{e^x} \left (8 x^3-8 e^x x^4+e^{\frac {1+16 x^3}{16 x^2}} \left (1-8 x^3+8 e^x x^3\right )\right )}{8 e^{\frac {1+16 x^3}{8 x^2}} x^3-16 e^{\frac {1+16 x^3}{16 x^2}} x^4+8 x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 e^{\frac {1+16 x^3}{8 x^2}} x^3-16 e^{\frac {1+16 x^3}{16 x^2}} x^4+8 x^5+e^{e^x} \left (8 x^3-8 e^x x^4+e^{\frac {1+16 x^3}{16 x^2}} \left (1-8 x^3+8 e^x x^3\right )\right )}{8 \left (e^{\frac {1}{16 x^2}+x}-x\right )^2 x^3} \, dx\\ &=\frac {1}{8} \int \frac {8 e^{\frac {1+16 x^3}{8 x^2}} x^3-16 e^{\frac {1+16 x^3}{16 x^2}} x^4+8 x^5+e^{e^x} \left (8 x^3-8 e^x x^4+e^{\frac {1+16 x^3}{16 x^2}} \left (1-8 x^3+8 e^x x^3\right )\right )}{\left (e^{\frac {1}{16 x^2}+x}-x\right )^2 x^3} \, dx\\ &=\frac {1}{8} \int \left (8 e^{-\frac {1}{16 x^2}} \left (e^{e^x}+e^{\frac {1}{16 x^2}}\right )-\frac {e^{e^x} \left (-1-8 x^2+8 x^3\right )}{\left (e^{\frac {1}{16 x^2}+x}-x\right )^2 x^2}-\frac {e^{e^x-\frac {1}{16 x^2}} \left (-e^{\frac {1}{16 x^2}}+8 e^{\frac {1}{16 x^2}} x^3-8 x^4\right )}{\left (e^{\frac {1}{16 x^2}+x}-x\right ) x^3}\right ) \, dx\\ &=-\left (\frac {1}{8} \int \frac {e^{e^x} \left (-1-8 x^2+8 x^3\right )}{\left (e^{\frac {1}{16 x^2}+x}-x\right )^2 x^2} \, dx\right )-\frac {1}{8} \int \frac {e^{e^x-\frac {1}{16 x^2}} \left (-e^{\frac {1}{16 x^2}}+8 e^{\frac {1}{16 x^2}} x^3-8 x^4\right )}{\left (e^{\frac {1}{16 x^2}+x}-x\right ) x^3} \, dx+\int e^{-\frac {1}{16 x^2}} \left (e^{e^x}+e^{\frac {1}{16 x^2}}\right ) \, dx\\ &=-\left (\frac {1}{8} \int \left (-\frac {8 e^{e^x}}{\left (e^{\frac {1}{16 x^2}+x}-x\right )^2}-\frac {e^{e^x}}{\left (e^{\frac {1}{16 x^2}+x}-x\right )^2 x^2}+\frac {8 e^{e^x} x}{\left (e^{\frac {1}{16 x^2}+x}-x\right )^2}\right ) \, dx\right )-\frac {1}{8} \int \frac {e^{e^x} \left (-1+8 x^3-8 e^{-\frac {1}{16 x^2}} x^4\right )}{\left (e^{\frac {1}{16 x^2}+x}-x\right ) x^3} \, dx+\int \left (1+e^{e^x-\frac {1}{16 x^2}}\right ) \, dx\\ &=x+\frac {1}{8} \int \frac {e^{e^x}}{\left (e^{\frac {1}{16 x^2}+x}-x\right )^2 x^2} \, dx-\frac {1}{8} \int \left (\frac {8 e^{e^x}}{e^{\frac {1}{16 x^2}+x}-x}-\frac {e^{e^x}}{\left (e^{\frac {1}{16 x^2}+x}-x\right ) x^3}-\frac {8 e^{e^x-\frac {1}{16 x^2}} x}{e^{\frac {1}{16 x^2}+x}-x}\right ) \, dx+\int e^{e^x-\frac {1}{16 x^2}} \, dx+\int \frac {e^{e^x}}{\left (e^{\frac {1}{16 x^2}+x}-x\right )^2} \, dx-\int \frac {e^{e^x} x}{\left (e^{\frac {1}{16 x^2}+x}-x\right )^2} \, dx\\ &=x+\frac {1}{8} \int \frac {e^{e^x}}{\left (e^{\frac {1}{16 x^2}+x}-x\right ) x^3} \, dx+\frac {1}{8} \int \frac {e^{e^x}}{\left (e^{\frac {1}{16 x^2}+x}-x\right )^2 x^2} \, dx+\int e^{e^x-\frac {1}{16 x^2}} \, dx+\int \frac {e^{e^x}}{\left (e^{\frac {1}{16 x^2}+x}-x\right )^2} \, dx-\int \frac {e^{e^x}}{e^{\frac {1}{16 x^2}+x}-x} \, dx-\int \frac {e^{e^x} x}{\left (e^{\frac {1}{16 x^2}+x}-x\right )^2} \, dx+\int \frac {e^{e^x-\frac {1}{16 x^2}} x}{e^{\frac {1}{16 x^2}+x}-x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 32, normalized size = 1.10 \begin {gather*} \frac {1}{8} \left (\frac {8 e^{e^x}}{e^{\frac {1}{16 x^2}+x}-x}+8 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.87, size = 45, normalized size = 1.55 \begin {gather*} \frac {x^{2} - x e^{\left (\frac {16 \, x^{3} + 1}{16 \, x^{2}}\right )} - e^{\left (e^{x}\right )}}{x - e^{\left (\frac {16 \, x^{3} + 1}{16 \, x^{2}}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.29, size = 326, normalized size = 11.24 \begin {gather*} \frac {8 \, x^{5} e^{\left (\frac {16 \, x^{3} + 1}{16 \, x^{2}}\right )} - 8 \, x^{4} e^{\left (\frac {16 \, x^{3} + 1}{8 \, x^{2}}\right )} - 8 \, x^{4} e^{\left (\frac {16 \, x^{3} + 1}{16 \, x^{2}}\right )} + 8 \, x^{3} e^{\left (x + \frac {16 \, x^{3} + 16 \, x^{2} e^{x} + 1}{16 \, x^{2}}\right )} - 8 \, x^{3} e^{\left (x + \frac {16 \, x^{3} + 1}{16 \, x^{2}} + e^{x}\right )} - 8 \, x^{3} e^{\left (\frac {16 \, x^{3} + 16 \, x^{2} e^{x} + 1}{16 \, x^{2}}\right )} + 8 \, x^{3} e^{\left (\frac {16 \, x^{3} + 1}{8 \, x^{2}}\right )} + 8 \, x^{2} e^{\left (\frac {16 \, x^{3} + 1}{16 \, x^{2}} + e^{x}\right )} - x^{2} e^{\left (\frac {16 \, x^{3} + 1}{16 \, x^{2}}\right )} + x e^{\left (\frac {16 \, x^{3} + 1}{8 \, x^{2}}\right )} + e^{\left (\frac {16 \, x^{3} + 16 \, x^{2} e^{x} + 1}{16 \, x^{2}}\right )}}{8 \, x^{4} e^{\left (\frac {16 \, x^{3} + 1}{16 \, x^{2}}\right )} - 8 \, x^{3} e^{\left (\frac {16 \, x^{3} + 1}{8 \, x^{2}}\right )} - 8 \, x^{3} e^{\left (\frac {16 \, x^{3} + 1}{16 \, x^{2}}\right )} + 8 \, x^{2} e^{\left (\frac {16 \, x^{3} + 1}{8 \, x^{2}}\right )} - x e^{\left (\frac {16 \, x^{3} + 1}{16 \, x^{2}}\right )} + e^{\left (\frac {16 \, x^{3} + 1}{8 \, x^{2}}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.04, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (8 \,{\mathrm e}^{x} x^{3}-8 x^{3}+1\right ) {\mathrm e}^{\frac {16 x^{3}+1}{16 x^{2}}}-8 \,{\mathrm e}^{x} x^{4}+8 x^{3}\right ) {\mathrm e}^{{\mathrm e}^{x}}+8 x^{3} {\mathrm e}^{\frac {16 x^{3}+1}{8 x^{2}}}-16 x^{4} {\mathrm e}^{\frac {16 x^{3}+1}{16 x^{2}}}+8 x^{5}}{8 x^{3} {\mathrm e}^{\frac {16 x^{3}+1}{8 x^{2}}}-16 x^{4} {\mathrm e}^{\frac {16 x^{3}+1}{16 x^{2}}}+8 x^{5}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x + \frac {1}{8} \, \int \frac {{\left (8 \, x^{3} e^{\left (2 \, x\right )} - {\left (8 \, x^{3} - 1\right )} e^{x}\right )} e^{\left (\frac {1}{16 \, x^{2}} + e^{x}\right )} - 8 \, {\left (x^{4} e^{x} - x^{3}\right )} e^{\left (e^{x}\right )}}{x^{5} - 2 \, x^{4} e^{\left (x + \frac {1}{16 \, x^{2}}\right )} + x^{3} e^{\left (2 \, x + \frac {1}{8 \, x^{2}}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.09, size = 21, normalized size = 0.72 \begin {gather*} x-\frac {{\mathrm {e}}^{{\mathrm {e}}^x}}{x-{\mathrm {e}}^{x+\frac {1}{16\,x^2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 19, normalized size = 0.66 \begin {gather*} x - \frac {e^{e^{x}}}{x - e^{\frac {x^{3} + \frac {1}{16}}{x^{2}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________