Optimal. Leaf size=20 \[ \frac {9 \log (2 x)}{2 x \left (-e^x+x\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 1.35, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {9 e^x-9 x+\left (e^x (-9-18 x)+27 x\right ) \log (2 x)}{2 e^{3 x} x^2-6 e^{2 x} x^3+6 e^x x^4-2 x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {9 \left (e^x-x-\left (-3 x+e^x (1+2 x)\right ) \log (2 x)\right )}{2 \left (e^x-x\right )^3 x^2} \, dx\\ &=\frac {9}{2} \int \frac {e^x-x-\left (-3 x+e^x (1+2 x)\right ) \log (2 x)}{\left (e^x-x\right )^3 x^2} \, dx\\ &=\frac {9}{2} \int \left (-\frac {2 (-1+x) \log (2 x)}{\left (e^x-x\right )^3 x}-\frac {-1+\log (2 x)+2 x \log (2 x)}{\left (e^x-x\right )^2 x^2}\right ) \, dx\\ &=-\left (\frac {9}{2} \int \frac {-1+\log (2 x)+2 x \log (2 x)}{\left (e^x-x\right )^2 x^2} \, dx\right )-9 \int \frac {(-1+x) \log (2 x)}{\left (e^x-x\right )^3 x} \, dx\\ &=-\left (\frac {9}{2} \int \left (-\frac {1}{\left (e^x-x\right )^2 x^2}+\frac {\log (2 x)}{\left (e^x-x\right )^2 x^2}+\frac {2 \log (2 x)}{\left (e^x-x\right )^2 x}\right ) \, dx\right )+9 \int \frac {\int \frac {1}{\left (e^x-x\right )^3} \, dx+\int \frac {1}{x \left (-e^x+x\right )^3} \, dx}{x} \, dx-(9 \log (2 x)) \int \frac {1}{\left (e^x-x\right )^3} \, dx-(9 \log (2 x)) \int \frac {1}{x \left (-e^x+x\right )^3} \, dx\\ &=\frac {9}{2} \int \frac {1}{\left (e^x-x\right )^2 x^2} \, dx-\frac {9}{2} \int \frac {\log (2 x)}{\left (e^x-x\right )^2 x^2} \, dx-9 \int \frac {\log (2 x)}{\left (e^x-x\right )^2 x} \, dx+9 \int \left (\frac {\int \frac {1}{\left (e^x-x\right )^3} \, dx}{x}+\frac {\int \frac {1}{x \left (-e^x+x\right )^3} \, dx}{x}\right ) \, dx-(9 \log (2 x)) \int \frac {1}{\left (e^x-x\right )^3} \, dx-(9 \log (2 x)) \int \frac {1}{x \left (-e^x+x\right )^3} \, dx\\ &=\frac {9}{2} \int \frac {1}{\left (e^x-x\right )^2 x^2} \, dx+\frac {9}{2} \int \frac {\int \frac {1}{\left (e^x-x\right )^2 x^2} \, dx}{x} \, dx+9 \int \frac {\int \frac {1}{\left (e^x-x\right )^3} \, dx}{x} \, dx+9 \int \frac {\int \frac {1}{\left (e^x-x\right )^2 x} \, dx}{x} \, dx+9 \int \frac {\int \frac {1}{x \left (-e^x+x\right )^3} \, dx}{x} \, dx-\frac {1}{2} (9 \log (2 x)) \int \frac {1}{\left (e^x-x\right )^2 x^2} \, dx-(9 \log (2 x)) \int \frac {1}{\left (e^x-x\right )^3} \, dx-(9 \log (2 x)) \int \frac {1}{\left (e^x-x\right )^2 x} \, dx-(9 \log (2 x)) \int \frac {1}{x \left (-e^x+x\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 20, normalized size = 1.00 \begin {gather*} \frac {9 \log (2 x)}{2 \left (e^x-x\right )^2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.99, size = 25, normalized size = 1.25 \begin {gather*} \frac {9 \, \log \left (2 \, x\right )}{2 \, {\left (x^{3} - 2 \, x^{2} e^{x} + x e^{\left (2 \, x\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 26, normalized size = 1.30 \begin {gather*} \frac {9 \, {\left (\log \relax (2) + \log \relax (x)\right )}}{2 \, {\left (x^{3} - 2 \, x^{2} e^{x} + x e^{\left (2 \, x\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 18, normalized size = 0.90
method | result | size |
risch | \(\frac {9 \ln \left (2 x \right )}{2 x \left (x -{\mathrm e}^{x}\right )^{2}}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.70, size = 26, normalized size = 1.30 \begin {gather*} \frac {9 \, {\left (\log \relax (2) + \log \relax (x)\right )}}{2 \, {\left (x^{3} - 2 \, x^{2} e^{x} + x e^{\left (2 \, x\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.34, size = 28, normalized size = 1.40 \begin {gather*} \frac {9\,\ln \left (2\,x\right )}{2\,x\,{\mathrm {e}}^{2\,x}-4\,x^2\,{\mathrm {e}}^x+2\,x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 27, normalized size = 1.35 \begin {gather*} \frac {9 \log {\left (2 x \right )}}{2 x^{3} - 4 x^{2} e^{x} + 2 x e^{2 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________