Optimal. Leaf size=32 \[ 4-e^x-\frac {\log \left (\frac {4}{3}\right )}{5 \left (-e^{e^4}+2 e^x\right )}+\log (2) \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 27, normalized size of antiderivative = 0.84, number of steps used = 4, number of rules used = 3, integrand size = 68, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.044, Rules used = {2282, 12, 683} \begin {gather*} \frac {\log \left (\frac {16}{9}\right )}{10 \left (e^{e^4}-2 e^x\right )}-e^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 683
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {-5 e^{2 e^4}+20 e^{e^4} x-20 x^2+\log \left (\frac {16}{9}\right )}{5 \left (e^{e^4}-2 x\right )^2} \, dx,x,e^x\right )\\ &=\frac {1}{5} \operatorname {Subst}\left (\int \frac {-5 e^{2 e^4}+20 e^{e^4} x-20 x^2+\log \left (\frac {16}{9}\right )}{\left (e^{e^4}-2 x\right )^2} \, dx,x,e^x\right )\\ &=\frac {1}{5} \operatorname {Subst}\left (\int \left (-5+\frac {\log \left (\frac {16}{9}\right )}{\left (e^{e^4}-2 x\right )^2}\right ) \, dx,x,e^x\right )\\ &=-e^x+\frac {\log \left (\frac {16}{9}\right )}{10 \left (e^{e^4}-2 e^x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 31, normalized size = 0.97 \begin {gather*} \frac {1}{5} \left (-5 e^x+\frac {\log \left (\frac {16}{9}\right )}{2 \left (e^{e^4}-2 e^x\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.55, size = 50, normalized size = 1.56 \begin {gather*} -\frac {e^{\left (4 \, e^{4}\right )} \log \left (\frac {4}{3}\right ) + 10 \, e^{\left (2 \, x + 4 \, e^{4}\right )} - 5 \, e^{\left (x + 5 \, e^{4}\right )}}{5 \, {\left (2 \, e^{\left (x + 4 \, e^{4}\right )} - e^{\left (5 \, e^{4}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 26, normalized size = 0.81 \begin {gather*} \frac {\log \relax (3) - 2 \, \log \relax (2)}{5 \, {\left (2 \, e^{x} - e^{\left (e^{4}\right )}\right )}} - e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 34, normalized size = 1.06
method | result | size |
norman | \(\frac {2 \,{\mathrm e}^{2 x}-\frac {{\mathrm e}^{2 \,{\mathrm e}^{4}}}{2}+\frac {2 \ln \relax (2)}{5}-\frac {\ln \relax (3)}{5}}{{\mathrm e}^{{\mathrm e}^{4}}-2 \,{\mathrm e}^{x}}\) | \(34\) |
risch | \(-{\mathrm e}^{x}+\frac {2 \ln \relax (2)}{5 \left ({\mathrm e}^{{\mathrm e}^{4}}-2 \,{\mathrm e}^{x}\right )}-\frac {\ln \relax (3)}{5 \left ({\mathrm e}^{{\mathrm e}^{4}}-2 \,{\mathrm e}^{x}\right )}\) | \(34\) |
default | \(\frac {10 \,{\mathrm e}^{2 x}-5 \,{\mathrm e}^{2 \,{\mathrm e}^{4}}}{5 \,{\mathrm e}^{{\mathrm e}^{4}}-10 \,{\mathrm e}^{x}}+\frac {{\mathrm e}^{2 \,{\mathrm e}^{4}}}{2 \,{\mathrm e}^{{\mathrm e}^{4}}-4 \,{\mathrm e}^{x}}+\frac {2 \ln \relax (2)}{5 \left ({\mathrm e}^{{\mathrm e}^{4}}-2 \,{\mathrm e}^{x}\right )}-\frac {\ln \relax (3)}{5 \left ({\mathrm e}^{{\mathrm e}^{4}}-2 \,{\mathrm e}^{x}\right )}\) | \(73\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 21, normalized size = 0.66 \begin {gather*} -\frac {\log \left (\frac {4}{3}\right )}{5 \, {\left (2 \, e^{x} - e^{\left (e^{4}\right )}\right )}} - e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.20, size = 41, normalized size = 1.28 \begin {gather*} \frac {10\,{\mathrm {e}}^{2\,x}-{\mathrm {e}}^{x-{\mathrm {e}}^4}\,\left (5\,{\mathrm {e}}^{2\,{\mathrm {e}}^4}-\ln \left (\frac {16}{9}\right )\right )}{5\,{\mathrm {e}}^{{\mathrm {e}}^4}-10\,{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 22, normalized size = 0.69 \begin {gather*} - e^{x} + \frac {- 2 \log {\relax (2 )} + \log {\relax (3 )}}{10 e^{x} - 5 e^{e^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________