Optimal. Leaf size=22 \[ e^x-\frac {2}{x}+e^{e^{1-\frac {60}{e^4}}} x \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 2, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {14, 2194} \begin {gather*} e^{e^{1-\frac {60}{e^4}}} x+e^x-\frac {2}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^x+\frac {2+e^{e^{1-\frac {60}{e^4}}} x^2}{x^2}\right ) \, dx\\ &=\int e^x \, dx+\int \frac {2+e^{e^{1-\frac {60}{e^4}}} x^2}{x^2} \, dx\\ &=e^x+\int \left (e^{e^{1-\frac {60}{e^4}}}+\frac {2}{x^2}\right ) \, dx\\ &=e^x-\frac {2}{x}+e^{e^{1-\frac {60}{e^4}}} x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 22, normalized size = 1.00 \begin {gather*} e^x-\frac {2}{x}+e^{e^{1-\frac {60}{e^4}}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 23, normalized size = 1.05 \begin {gather*} \frac {x^{2} e^{\left (e^{\left ({\left (e^{4} - 60\right )} e^{\left (-4\right )}\right )}\right )} + x e^{x} - 2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 23, normalized size = 1.05 \begin {gather*} \frac {x^{2} e^{\left (e^{\left ({\left (e^{4} - 60\right )} e^{\left (-4\right )}\right )}\right )} + x e^{x} - 2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 19, normalized size = 0.86
method | result | size |
risch | \({\mathrm e}^{{\mathrm e}^{1-60 \,{\mathrm e}^{-4}}} x -\frac {2}{x}+{\mathrm e}^{x}\) | \(19\) |
default | \(-\frac {2}{x}+{\mathrm e}^{x}+{\mathrm e}^{{\mathrm e} \,{\mathrm e}^{-60 \,{\mathrm e}^{-4}}} x\) | \(22\) |
norman | \(\frac {-2+x^{2} {\mathrm e}^{{\mathrm e} \,{\mathrm e}^{-60 \,{\mathrm e}^{-4}}}+{\mathrm e}^{x} x}{x}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 18, normalized size = 0.82 \begin {gather*} x e^{\left (e^{\left (-60 \, e^{\left (-4\right )} + 1\right )}\right )} - \frac {2}{x} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.09, size = 19, normalized size = 0.86 \begin {gather*} {\mathrm {e}}^x+x\,{\mathrm {e}}^{{\mathrm {e}}^{-60\,{\mathrm {e}}^{-4}}\,\mathrm {e}}-\frac {2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 19, normalized size = 0.86 \begin {gather*} x e^{\frac {e}{e^{\frac {60}{e^{4}}}}} + e^{x} - \frac {2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________