Optimal. Leaf size=30 \[ -\frac {3}{16} x \left (\frac {5}{2}+x-\left (\frac {1}{4} \left (e^x-x\right )+\log (2)\right )^2\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.56, antiderivative size = 352, normalized size of antiderivative = 11.73, number of steps used = 74, number of rules used = 5, integrand size = 211, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.024, Rules used = {6, 12, 2176, 2194, 2196} \begin {gather*} -\frac {3 x^5}{4096}+\frac {3 e^x x^4}{1024}+\frac {3 x^4}{128}+\frac {3}{256} x^4 \log (2)-\frac {3 e^x x^3}{64}-\frac {9 e^{2 x} x^3}{2048}-\frac {33 x^3}{256}-\frac {9}{128} x^3 \log ^2(2)-\frac {9}{256} e^x x^3 \log (2)-\frac {3}{16} x^3 \log (2)-\frac {15 e^x x^2}{128}+\frac {3}{128} e^{2 x} x^2+\frac {3 e^{3 x} x^2}{1024}-\frac {3}{16} x^2 \left (5-\log ^3(2)\right )+\frac {9}{64} e^x x^2 \log ^2(2)+\frac {3}{8} x^2 \log ^2(2)+\frac {3}{16} e^x x^2 \log (2)+\frac {9}{256} e^{2 x} x^2 \log (2)-\frac {15}{32} x^2 \log (2)+\frac {15}{256} e^{2 x} x+\frac {3 e^{4 x}}{16384}-\frac {3 e^{4 x} (4 x+1)}{16384}-\frac {3}{64} x \left (25+4 \log ^4(2)\right )+\frac {3}{16} e^x \log ^3(2)-\frac {3}{16} e^x (x+1) \log ^3(2)+\frac {15}{16} x \log ^2(2)+\frac {9}{256} e^{2 x} \log ^2(2)-\frac {9}{256} e^{2 x} (2 x+1) \log ^2(2)+\frac {15}{32} e^x x \log (2)+\frac {1}{256} e^{3 x} \log (2)-\frac {1}{256} e^{3 x} (3 x+1) \log (2) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4800+e^{4 x} (-3-12 x)-1584 x^2+384 x^3-15 x^4+\left (-3840 x-2304 x^2+192 x^3\right ) \log (2)+\left (3840+3072 x-864 x^2\right ) \log ^2(2)-768 \log ^4(2)+e^{3 x} \left (24 x+36 x^2+(-48-144 x) \log (2)\right )+e^{2 x} \left (240+672 x+138 x^2-36 x^3+\left (288 x+288 x^2\right ) \log (2)+(-288-576 x) \log ^2(2)\right )+x \left (-7680+1536 \log ^3(2)\right )+e^x \left (-960 x-1056 x^2-144 x^3+12 x^4+\left (1920+3456 x+336 x^2-144 x^3\right ) \log (2)+\left (1152 x+576 x^2\right ) \log ^2(2)+(-768-768 x) \log ^3(2)\right )}{4096} \, dx\\ &=\frac {\int \left (-4800+e^{4 x} (-3-12 x)-1584 x^2+384 x^3-15 x^4+\left (-3840 x-2304 x^2+192 x^3\right ) \log (2)+\left (3840+3072 x-864 x^2\right ) \log ^2(2)-768 \log ^4(2)+e^{3 x} \left (24 x+36 x^2+(-48-144 x) \log (2)\right )+e^{2 x} \left (240+672 x+138 x^2-36 x^3+\left (288 x+288 x^2\right ) \log (2)+(-288-576 x) \log ^2(2)\right )+x \left (-7680+1536 \log ^3(2)\right )+e^x \left (-960 x-1056 x^2-144 x^3+12 x^4+\left (1920+3456 x+336 x^2-144 x^3\right ) \log (2)+\left (1152 x+576 x^2\right ) \log ^2(2)+(-768-768 x) \log ^3(2)\right )\right ) \, dx}{4096}\\ &=-\frac {33 x^3}{256}+\frac {3 x^4}{128}-\frac {3 x^5}{4096}-\frac {3}{16} x^2 \left (5-\log ^3(2)\right )-\frac {3}{64} x \left (25+4 \log ^4(2)\right )+\frac {\int e^{4 x} (-3-12 x) \, dx}{4096}+\frac {\int e^{3 x} \left (24 x+36 x^2+(-48-144 x) \log (2)\right ) \, dx}{4096}+\frac {\int e^{2 x} \left (240+672 x+138 x^2-36 x^3+\left (288 x+288 x^2\right ) \log (2)+(-288-576 x) \log ^2(2)\right ) \, dx}{4096}+\frac {\int e^x \left (-960 x-1056 x^2-144 x^3+12 x^4+\left (1920+3456 x+336 x^2-144 x^3\right ) \log (2)+\left (1152 x+576 x^2\right ) \log ^2(2)+(-768-768 x) \log ^3(2)\right ) \, dx}{4096}+\frac {\log (2) \int \left (-3840 x-2304 x^2+192 x^3\right ) \, dx}{4096}+\frac {\log ^2(2) \int \left (3840+3072 x-864 x^2\right ) \, dx}{4096}\\ &=-\frac {33 x^3}{256}+\frac {3 x^4}{128}-\frac {3 x^5}{4096}-\frac {3 e^{4 x} (1+4 x)}{16384}-\frac {15}{32} x^2 \log (2)-\frac {3}{16} x^3 \log (2)+\frac {3}{256} x^4 \log (2)+\frac {15}{16} x \log ^2(2)+\frac {3}{8} x^2 \log ^2(2)-\frac {9}{128} x^3 \log ^2(2)-\frac {3}{16} x^2 \left (5-\log ^3(2)\right )-\frac {3}{64} x \left (25+4 \log ^4(2)\right )+\frac {\int \left (24 e^{3 x} x+36 e^{3 x} x^2-48 e^{3 x} (1+3 x) \log (2)\right ) \, dx}{4096}+\frac {\int \left (240 e^{2 x}+672 e^{2 x} x+138 e^{2 x} x^2-36 e^{2 x} x^3+288 e^{2 x} x (1+x) \log (2)-288 e^{2 x} (1+2 x) \log ^2(2)\right ) \, dx}{4096}+\frac {\int \left (-960 e^x x-1056 e^x x^2-144 e^x x^3+12 e^x x^4-48 e^x \left (-40-72 x-7 x^2+3 x^3\right ) \log (2)+576 e^x x (2+x) \log ^2(2)-768 e^x (1+x) \log ^3(2)\right ) \, dx}{4096}+\frac {3 \int e^{4 x} \, dx}{4096}\\ &=\frac {3 e^{4 x}}{16384}-\frac {33 x^3}{256}+\frac {3 x^4}{128}-\frac {3 x^5}{4096}-\frac {3 e^{4 x} (1+4 x)}{16384}-\frac {15}{32} x^2 \log (2)-\frac {3}{16} x^3 \log (2)+\frac {3}{256} x^4 \log (2)+\frac {15}{16} x \log ^2(2)+\frac {3}{8} x^2 \log ^2(2)-\frac {9}{128} x^3 \log ^2(2)-\frac {3}{16} x^2 \left (5-\log ^3(2)\right )-\frac {3}{64} x \left (25+4 \log ^4(2)\right )+\frac {3 \int e^x x^4 \, dx}{1024}+\frac {3}{512} \int e^{3 x} x \, dx+\frac {9 \int e^{3 x} x^2 \, dx}{1024}-\frac {9 \int e^{2 x} x^3 \, dx}{1024}+\frac {69 \int e^{2 x} x^2 \, dx}{2048}-\frac {9}{256} \int e^x x^3 \, dx+\frac {15}{256} \int e^{2 x} \, dx+\frac {21}{128} \int e^{2 x} x \, dx-\frac {15}{64} \int e^x x \, dx-\frac {33}{128} \int e^x x^2 \, dx-\frac {1}{256} (3 \log (2)) \int e^{3 x} (1+3 x) \, dx-\frac {1}{256} (3 \log (2)) \int e^x \left (-40-72 x-7 x^2+3 x^3\right ) \, dx+\frac {1}{128} (9 \log (2)) \int e^{2 x} x (1+x) \, dx-\frac {1}{128} \left (9 \log ^2(2)\right ) \int e^{2 x} (1+2 x) \, dx+\frac {1}{64} \left (9 \log ^2(2)\right ) \int e^x x (2+x) \, dx-\frac {1}{16} \left (3 \log ^3(2)\right ) \int e^x (1+x) \, dx\\ &=\frac {15 e^{2 x}}{512}+\frac {3 e^{4 x}}{16384}-\frac {15 e^x x}{64}+\frac {21}{256} e^{2 x} x+\frac {1}{512} e^{3 x} x-\frac {33 e^x x^2}{128}+\frac {69 e^{2 x} x^2}{4096}+\frac {3 e^{3 x} x^2}{1024}-\frac {33 x^3}{256}-\frac {9 e^x x^3}{256}-\frac {9 e^{2 x} x^3}{2048}+\frac {3 x^4}{128}+\frac {3 e^x x^4}{1024}-\frac {3 x^5}{4096}-\frac {3 e^{4 x} (1+4 x)}{16384}-\frac {15}{32} x^2 \log (2)-\frac {3}{16} x^3 \log (2)+\frac {3}{256} x^4 \log (2)-\frac {1}{256} e^{3 x} (1+3 x) \log (2)+\frac {15}{16} x \log ^2(2)+\frac {3}{8} x^2 \log ^2(2)-\frac {9}{128} x^3 \log ^2(2)-\frac {9}{256} e^{2 x} (1+2 x) \log ^2(2)-\frac {3}{16} e^x (1+x) \log ^3(2)-\frac {3}{16} x^2 \left (5-\log ^3(2)\right )-\frac {3}{64} x \left (25+4 \log ^4(2)\right )-\frac {1}{512} \int e^{3 x} \, dx-\frac {3}{512} \int e^{3 x} x \, dx-\frac {3}{256} \int e^x x^3 \, dx+\frac {27 \int e^{2 x} x^2 \, dx}{2048}-\frac {69 \int e^{2 x} x \, dx}{2048}-\frac {21}{256} \int e^{2 x} \, dx+\frac {27}{256} \int e^x x^2 \, dx+\frac {15 \int e^x \, dx}{64}+\frac {33}{64} \int e^x x \, dx+\frac {1}{256} (3 \log (2)) \int e^{3 x} \, dx-\frac {1}{256} (3 \log (2)) \int \left (-40 e^x-72 e^x x-7 e^x x^2+3 e^x x^3\right ) \, dx+\frac {1}{128} (9 \log (2)) \int \left (e^{2 x} x+e^{2 x} x^2\right ) \, dx+\frac {1}{128} \left (9 \log ^2(2)\right ) \int e^{2 x} \, dx+\frac {1}{64} \left (9 \log ^2(2)\right ) \int \left (2 e^x x+e^x x^2\right ) \, dx+\frac {1}{16} \left (3 \log ^3(2)\right ) \int e^x \, dx\\ &=\frac {15 e^x}{64}-\frac {3 e^{2 x}}{256}-\frac {e^{3 x}}{1536}+\frac {3 e^{4 x}}{16384}+\frac {9 e^x x}{32}+\frac {267 e^{2 x} x}{4096}-\frac {39 e^x x^2}{256}+\frac {3}{128} e^{2 x} x^2+\frac {3 e^{3 x} x^2}{1024}-\frac {33 x^3}{256}-\frac {3 e^x x^3}{64}-\frac {9 e^{2 x} x^3}{2048}+\frac {3 x^4}{128}+\frac {3 e^x x^4}{1024}-\frac {3 x^5}{4096}-\frac {3 e^{4 x} (1+4 x)}{16384}+\frac {1}{256} e^{3 x} \log (2)-\frac {15}{32} x^2 \log (2)-\frac {3}{16} x^3 \log (2)+\frac {3}{256} x^4 \log (2)-\frac {1}{256} e^{3 x} (1+3 x) \log (2)+\frac {9}{256} e^{2 x} \log ^2(2)+\frac {15}{16} x \log ^2(2)+\frac {3}{8} x^2 \log ^2(2)-\frac {9}{128} x^3 \log ^2(2)-\frac {9}{256} e^{2 x} (1+2 x) \log ^2(2)+\frac {3}{16} e^x \log ^3(2)-\frac {3}{16} e^x (1+x) \log ^3(2)-\frac {3}{16} x^2 \left (5-\log ^3(2)\right )-\frac {3}{64} x \left (25+4 \log ^4(2)\right )+\frac {1}{512} \int e^{3 x} \, dx-\frac {27 \int e^{2 x} x \, dx}{2048}+\frac {69 \int e^{2 x} \, dx}{4096}+\frac {9}{256} \int e^x x^2 \, dx-\frac {27}{128} \int e^x x \, dx-\frac {33 \int e^x \, dx}{64}-\frac {1}{256} (9 \log (2)) \int e^x x^3 \, dx+\frac {1}{128} (9 \log (2)) \int e^{2 x} x \, dx+\frac {1}{128} (9 \log (2)) \int e^{2 x} x^2 \, dx+\frac {1}{256} (21 \log (2)) \int e^x x^2 \, dx+\frac {1}{32} (15 \log (2)) \int e^x \, dx+\frac {1}{32} (27 \log (2)) \int e^x x \, dx+\frac {1}{64} \left (9 \log ^2(2)\right ) \int e^x x^2 \, dx+\frac {1}{32} \left (9 \log ^2(2)\right ) \int e^x x \, dx\\ &=-\frac {9 e^x}{32}-\frac {27 e^{2 x}}{8192}+\frac {3 e^{4 x}}{16384}+\frac {9 e^x x}{128}+\frac {15}{256} e^{2 x} x-\frac {15 e^x x^2}{128}+\frac {3}{128} e^{2 x} x^2+\frac {3 e^{3 x} x^2}{1024}-\frac {33 x^3}{256}-\frac {3 e^x x^3}{64}-\frac {9 e^{2 x} x^3}{2048}+\frac {3 x^4}{128}+\frac {3 e^x x^4}{1024}-\frac {3 x^5}{4096}-\frac {3 e^{4 x} (1+4 x)}{16384}+\frac {15}{32} e^x \log (2)+\frac {1}{256} e^{3 x} \log (2)+\frac {27}{32} e^x x \log (2)+\frac {9}{256} e^{2 x} x \log (2)-\frac {15}{32} x^2 \log (2)+\frac {21}{256} e^x x^2 \log (2)+\frac {9}{256} e^{2 x} x^2 \log (2)-\frac {3}{16} x^3 \log (2)-\frac {9}{256} e^x x^3 \log (2)+\frac {3}{256} x^4 \log (2)-\frac {1}{256} e^{3 x} (1+3 x) \log (2)+\frac {9}{256} e^{2 x} \log ^2(2)+\frac {15}{16} x \log ^2(2)+\frac {9}{32} e^x x \log ^2(2)+\frac {3}{8} x^2 \log ^2(2)+\frac {9}{64} e^x x^2 \log ^2(2)-\frac {9}{128} x^3 \log ^2(2)-\frac {9}{256} e^{2 x} (1+2 x) \log ^2(2)+\frac {3}{16} e^x \log ^3(2)-\frac {3}{16} e^x (1+x) \log ^3(2)-\frac {3}{16} x^2 \left (5-\log ^3(2)\right )-\frac {3}{64} x \left (25+4 \log ^4(2)\right )+\frac {27 \int e^{2 x} \, dx}{4096}-\frac {9}{128} \int e^x x \, dx+\frac {27 \int e^x \, dx}{128}-\frac {1}{256} (9 \log (2)) \int e^{2 x} \, dx-\frac {1}{128} (9 \log (2)) \int e^{2 x} x \, dx+\frac {1}{256} (27 \log (2)) \int e^x x^2 \, dx-\frac {1}{128} (21 \log (2)) \int e^x x \, dx-\frac {1}{32} (27 \log (2)) \int e^x \, dx-\frac {1}{32} \left (9 \log ^2(2)\right ) \int e^x \, dx-\frac {1}{32} \left (9 \log ^2(2)\right ) \int e^x x \, dx\\ &=-\frac {9 e^x}{128}+\frac {3 e^{4 x}}{16384}+\frac {15}{256} e^{2 x} x-\frac {15 e^x x^2}{128}+\frac {3}{128} e^{2 x} x^2+\frac {3 e^{3 x} x^2}{1024}-\frac {33 x^3}{256}-\frac {3 e^x x^3}{64}-\frac {9 e^{2 x} x^3}{2048}+\frac {3 x^4}{128}+\frac {3 e^x x^4}{1024}-\frac {3 x^5}{4096}-\frac {3 e^{4 x} (1+4 x)}{16384}-\frac {3}{8} e^x \log (2)-\frac {9}{512} e^{2 x} \log (2)+\frac {1}{256} e^{3 x} \log (2)+\frac {87}{128} e^x x \log (2)-\frac {15}{32} x^2 \log (2)+\frac {3}{16} e^x x^2 \log (2)+\frac {9}{256} e^{2 x} x^2 \log (2)-\frac {3}{16} x^3 \log (2)-\frac {9}{256} e^x x^3 \log (2)+\frac {3}{256} x^4 \log (2)-\frac {1}{256} e^{3 x} (1+3 x) \log (2)-\frac {9}{32} e^x \log ^2(2)+\frac {9}{256} e^{2 x} \log ^2(2)+\frac {15}{16} x \log ^2(2)+\frac {3}{8} x^2 \log ^2(2)+\frac {9}{64} e^x x^2 \log ^2(2)-\frac {9}{128} x^3 \log ^2(2)-\frac {9}{256} e^{2 x} (1+2 x) \log ^2(2)+\frac {3}{16} e^x \log ^3(2)-\frac {3}{16} e^x (1+x) \log ^3(2)-\frac {3}{16} x^2 \left (5-\log ^3(2)\right )-\frac {3}{64} x \left (25+4 \log ^4(2)\right )+\frac {9 \int e^x \, dx}{128}+\frac {1}{256} (9 \log (2)) \int e^{2 x} \, dx+\frac {1}{128} (21 \log (2)) \int e^x \, dx-\frac {1}{128} (27 \log (2)) \int e^x x \, dx+\frac {1}{32} \left (9 \log ^2(2)\right ) \int e^x \, dx\\ &=\frac {3 e^{4 x}}{16384}+\frac {15}{256} e^{2 x} x-\frac {15 e^x x^2}{128}+\frac {3}{128} e^{2 x} x^2+\frac {3 e^{3 x} x^2}{1024}-\frac {33 x^3}{256}-\frac {3 e^x x^3}{64}-\frac {9 e^{2 x} x^3}{2048}+\frac {3 x^4}{128}+\frac {3 e^x x^4}{1024}-\frac {3 x^5}{4096}-\frac {3 e^{4 x} (1+4 x)}{16384}-\frac {27}{128} e^x \log (2)+\frac {1}{256} e^{3 x} \log (2)+\frac {15}{32} e^x x \log (2)-\frac {15}{32} x^2 \log (2)+\frac {3}{16} e^x x^2 \log (2)+\frac {9}{256} e^{2 x} x^2 \log (2)-\frac {3}{16} x^3 \log (2)-\frac {9}{256} e^x x^3 \log (2)+\frac {3}{256} x^4 \log (2)-\frac {1}{256} e^{3 x} (1+3 x) \log (2)+\frac {9}{256} e^{2 x} \log ^2(2)+\frac {15}{16} x \log ^2(2)+\frac {3}{8} x^2 \log ^2(2)+\frac {9}{64} e^x x^2 \log ^2(2)-\frac {9}{128} x^3 \log ^2(2)-\frac {9}{256} e^{2 x} (1+2 x) \log ^2(2)+\frac {3}{16} e^x \log ^3(2)-\frac {3}{16} e^x (1+x) \log ^3(2)-\frac {3}{16} x^2 \left (5-\log ^3(2)\right )-\frac {3}{64} x \left (25+4 \log ^4(2)\right )+\frac {1}{128} (27 \log (2)) \int e^x \, dx\\ &=\frac {3 e^{4 x}}{16384}+\frac {15}{256} e^{2 x} x-\frac {15 e^x x^2}{128}+\frac {3}{128} e^{2 x} x^2+\frac {3 e^{3 x} x^2}{1024}-\frac {33 x^3}{256}-\frac {3 e^x x^3}{64}-\frac {9 e^{2 x} x^3}{2048}+\frac {3 x^4}{128}+\frac {3 e^x x^4}{1024}-\frac {3 x^5}{4096}-\frac {3 e^{4 x} (1+4 x)}{16384}+\frac {1}{256} e^{3 x} \log (2)+\frac {15}{32} e^x x \log (2)-\frac {15}{32} x^2 \log (2)+\frac {3}{16} e^x x^2 \log (2)+\frac {9}{256} e^{2 x} x^2 \log (2)-\frac {3}{16} x^3 \log (2)-\frac {9}{256} e^x x^3 \log (2)+\frac {3}{256} x^4 \log (2)-\frac {1}{256} e^{3 x} (1+3 x) \log (2)+\frac {9}{256} e^{2 x} \log ^2(2)+\frac {15}{16} x \log ^2(2)+\frac {3}{8} x^2 \log ^2(2)+\frac {9}{64} e^x x^2 \log ^2(2)-\frac {9}{128} x^3 \log ^2(2)-\frac {9}{256} e^{2 x} (1+2 x) \log ^2(2)+\frac {3}{16} e^x \log ^3(2)-\frac {3}{16} e^x (1+x) \log ^3(2)-\frac {3}{16} x^2 \left (5-\log ^3(2)\right )-\frac {3}{64} x \left (25+4 \log ^4(2)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.47, size = 119, normalized size = 3.97 \begin {gather*} -\frac {3 x \left (e^{4 x}-4 e^{3 x} (x-4 \log (2))+\left (x^2-8 x (2+\log (2))+8 \left (-5+2 \log ^2(2)\right )\right )^2-4 e^x \left (x^3-4 x^2 (4+\log (8))-8 \left (-27 \log (2)+8 \log ^3(2)+\log (128)\right )+4 x \left (-10+12 \log ^2(2)+\log (65536)\right )\right )+e^{2 x} \left (-80+6 x^2+96 \log ^2(2)-2 x (16+\log (16777216))\right )\right )}{4096} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.64, size = 186, normalized size = 6.20 \begin {gather*} -\frac {3}{4096} \, x^{5} + \frac {3}{16} \, x^{2} \log \relax (2)^{3} - \frac {3}{16} \, x \log \relax (2)^{4} + \frac {3}{128} \, x^{4} - \frac {33}{256} \, x^{3} - \frac {3}{128} \, {\left (3 \, x^{3} - 16 \, x^{2} - 40 \, x\right )} \log \relax (2)^{2} - \frac {15}{16} \, x^{2} - \frac {3}{4096} \, x e^{\left (4 \, x\right )} + \frac {3}{1024} \, {\left (x^{2} - 4 \, x \log \relax (2)\right )} e^{\left (3 \, x\right )} - \frac {3}{2048} \, {\left (3 \, x^{3} - 24 \, x^{2} \log \relax (2) + 48 \, x \log \relax (2)^{2} - 16 \, x^{2} - 40 \, x\right )} e^{\left (2 \, x\right )} + \frac {3}{1024} \, {\left (x^{4} + 48 \, x^{2} \log \relax (2)^{2} - 64 \, x \log \relax (2)^{3} - 16 \, x^{3} - 40 \, x^{2} - 4 \, {\left (3 \, x^{3} - 16 \, x^{2} - 40 \, x\right )} \log \relax (2)\right )} e^{x} + \frac {3}{256} \, {\left (x^{4} - 16 \, x^{3} - 40 \, x^{2}\right )} \log \relax (2) - \frac {75}{64} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 187, normalized size = 6.23 \begin {gather*} -\frac {3}{4096} \, x^{5} + \frac {3}{16} \, x^{2} \log \relax (2)^{3} - \frac {3}{16} \, x \log \relax (2)^{4} + \frac {3}{128} \, x^{4} - \frac {33}{256} \, x^{3} - \frac {3}{128} \, {\left (3 \, x^{3} - 16 \, x^{2} - 40 \, x\right )} \log \relax (2)^{2} - \frac {15}{16} \, x^{2} - \frac {3}{4096} \, x e^{\left (4 \, x\right )} + \frac {3}{1024} \, {\left (x^{2} - 4 \, x \log \relax (2)\right )} e^{\left (3 \, x\right )} - \frac {3}{2048} \, {\left (3 \, x^{3} - 24 \, x^{2} \log \relax (2) + 48 \, x \log \relax (2)^{2} - 16 \, x^{2} - 40 \, x\right )} e^{\left (2 \, x\right )} + \frac {3}{1024} \, {\left (x^{4} - 12 \, x^{3} \log \relax (2) + 48 \, x^{2} \log \relax (2)^{2} - 64 \, x \log \relax (2)^{3} - 16 \, x^{3} + 64 \, x^{2} \log \relax (2) - 40 \, x^{2} + 160 \, x \log \relax (2)\right )} e^{x} + \frac {3}{256} \, {\left (x^{4} - 16 \, x^{3} - 40 \, x^{2}\right )} \log \relax (2) - \frac {75}{64} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.08, size = 185, normalized size = 6.17
method | result | size |
norman | \(\left (\frac {3}{128}+\frac {3 \ln \relax (2)}{256}\right ) x^{4}+\left (-\frac {9 \ln \relax (2)^{2}}{128}-\frac {3 \ln \relax (2)}{16}-\frac {33}{256}\right ) x^{3}+\left (-\frac {3 \ln \relax (2)^{4}}{16}+\frac {15 \ln \relax (2)^{2}}{16}-\frac {75}{64}\right ) x +\left (\frac {3 \ln \relax (2)^{3}}{16}+\frac {3 \ln \relax (2)^{2}}{8}-\frac {15 \ln \relax (2)}{32}-\frac {15}{16}\right ) x^{2}+\left (-\frac {3}{64}-\frac {9 \ln \relax (2)}{256}\right ) x^{3} {\mathrm e}^{x}+\left (\frac {3}{128}+\frac {9 \ln \relax (2)}{256}\right ) x^{2} {\mathrm e}^{2 x}+\left (\frac {15}{256}-\frac {9 \ln \relax (2)^{2}}{128}\right ) x \,{\mathrm e}^{2 x}+\left (-\frac {3 \ln \relax (2)^{3}}{16}+\frac {15 \ln \relax (2)}{32}\right ) x \,{\mathrm e}^{x}+\left (-\frac {15}{128}+\frac {3 \ln \relax (2)}{16}+\frac {9 \ln \relax (2)^{2}}{64}\right ) x^{2} {\mathrm e}^{x}-\frac {3 x^{5}}{4096}-\frac {3 x \,{\mathrm e}^{4 x}}{4096}+\frac {3 x^{2} {\mathrm e}^{3 x}}{1024}+\frac {3 \,{\mathrm e}^{x} x^{4}}{1024}-\frac {9 \,{\mathrm e}^{2 x} x^{3}}{2048}-\frac {3 x \ln \relax (2) {\mathrm e}^{3 x}}{256}\) | \(185\) |
risch | \(-\frac {3 x \,{\mathrm e}^{4 x}}{4096}+\frac {\left (-48 x \ln \relax (2)+12 x^{2}\right ) {\mathrm e}^{3 x}}{4096}+\frac {\left (-288 x \ln \relax (2)^{2}+144 x^{2} \ln \relax (2)-18 x^{3}+96 x^{2}+240 x \right ) {\mathrm e}^{2 x}}{4096}+\frac {\left (-768 x \ln \relax (2)^{3}+576 x^{2} \ln \relax (2)^{2}-144 x^{3} \ln \relax (2)+12 x^{4}+768 x^{2} \ln \relax (2)-192 x^{3}+1920 x \ln \relax (2)-480 x^{2}\right ) {\mathrm e}^{x}}{4096}-\frac {3 x \ln \relax (2)^{4}}{16}+\frac {3 x^{2} \ln \relax (2)^{3}}{16}-\frac {9 x^{3} \ln \relax (2)^{2}}{128}+\frac {3 x^{2} \ln \relax (2)^{2}}{8}+\frac {15 x \ln \relax (2)^{2}}{16}+\frac {3 x^{4} \ln \relax (2)}{256}-\frac {3 x^{3} \ln \relax (2)}{16}-\frac {15 x^{2} \ln \relax (2)}{32}-\frac {3 x^{5}}{4096}+\frac {3 x^{4}}{128}-\frac {33 x^{3}}{256}-\frac {15 x^{2}}{16}-\frac {75 x}{64}\) | \(200\) |
default | \(-\frac {75 x}{64}-\frac {9 x^{3} \ln \relax (2) {\mathrm e}^{x}}{256}-\frac {9 x \ln \relax (2)^{2} {\mathrm e}^{2 x}}{128}+\frac {3 x^{2} \ln \relax (2) {\mathrm e}^{x}}{16}-\frac {3 x^{5}}{4096}+\frac {3 x^{4}}{128}-\frac {33 x^{3}}{256}-\frac {15 x^{2}}{16}+\frac {3 x^{2} {\mathrm e}^{3 x}}{1024}-\frac {9 \,{\mathrm e}^{2 x} x^{3}}{2048}+\frac {3 x^{2} \ln \relax (2)^{3}}{16}-\frac {3 x \ln \relax (2)^{4}}{16}-\frac {9 x^{3} \ln \relax (2)^{2}}{128}+\frac {15 x \ln \relax (2)^{2}}{16}+\frac {3 \,{\mathrm e}^{2 x} x^{2}}{128}+\frac {15 x \,{\mathrm e}^{2 x}}{256}+\frac {3 x^{4} \ln \relax (2)}{256}+\frac {3 x^{2} \ln \relax (2)^{2}}{8}+\frac {3 \,{\mathrm e}^{x} x^{4}}{1024}-\frac {15 x^{2} \ln \relax (2)}{32}-\frac {3 x^{3} \ln \relax (2)}{16}-\frac {15 \,{\mathrm e}^{x} x^{2}}{128}-\frac {3 \,{\mathrm e}^{x} x^{3}}{64}-\frac {3 x \,{\mathrm e}^{4 x}}{4096}+\frac {15 x \ln \relax (2) {\mathrm e}^{x}}{32}-\frac {3 \,{\mathrm e}^{x} \ln \relax (2)^{3} x}{16}+\frac {9 x^{2} \ln \relax (2) {\mathrm e}^{2 x}}{256}+\frac {9 \,{\mathrm e}^{x} \ln \relax (2)^{2} x^{2}}{64}-\frac {3 x \ln \relax (2) {\mathrm e}^{3 x}}{256}\) | \(225\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.69, size = 184, normalized size = 6.13 \begin {gather*} -\frac {3}{4096} \, x^{5} + \frac {3}{16} \, x^{2} \log \relax (2)^{3} - \frac {3}{16} \, x \log \relax (2)^{4} + \frac {3}{128} \, x^{4} - \frac {33}{256} \, x^{3} - \frac {3}{128} \, {\left (3 \, x^{3} - 16 \, x^{2} - 40 \, x\right )} \log \relax (2)^{2} - \frac {15}{16} \, x^{2} - \frac {3}{4096} \, x e^{\left (4 \, x\right )} + \frac {3}{1024} \, {\left (x^{2} - 4 \, x \log \relax (2)\right )} e^{\left (3 \, x\right )} - \frac {3}{2048} \, {\left (3 \, x^{3} - 8 \, x^{2} {\left (3 \, \log \relax (2) + 2\right )} + 8 \, {\left (6 \, \log \relax (2)^{2} - 5\right )} x\right )} e^{\left (2 \, x\right )} + \frac {3}{1024} \, {\left (x^{4} - 4 \, x^{3} {\left (3 \, \log \relax (2) + 4\right )} + 8 \, {\left (6 \, \log \relax (2)^{2} + 8 \, \log \relax (2) - 5\right )} x^{2} - 32 \, {\left (2 \, \log \relax (2)^{3} - 5 \, \log \relax (2)\right )} x\right )} e^{x} + \frac {3}{256} \, {\left (x^{4} - 16 \, x^{3} - 40 \, x^{2}\right )} \log \relax (2) - \frac {75}{64} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.33, size = 43, normalized size = 1.43 \begin {gather*} -\frac {3\,x\,{\left (16\,x-{\mathrm {e}}^{2\,x}+8\,x\,\ln \relax (2)-8\,{\mathrm {e}}^x\,\ln \relax (2)+2\,x\,{\mathrm {e}}^x-16\,{\ln \relax (2)}^2-x^2+40\right )}^2}{4096} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.44, size = 224, normalized size = 7.47 \begin {gather*} - \frac {3 x^{5}}{4096} + x^{4} \left (\frac {3 \log {\relax (2 )}}{256} + \frac {3}{128}\right ) + x^{3} \left (- \frac {3 \log {\relax (2 )}}{16} - \frac {33}{256} - \frac {9 \log {\relax (2 )}^{2}}{128}\right ) + x^{2} \left (- \frac {15}{16} - \frac {15 \log {\relax (2 )}}{32} + \frac {3 \log {\relax (2 )}^{3}}{16} + \frac {3 \log {\relax (2 )}^{2}}{8}\right ) - \frac {3 x e^{4 x}}{4096} + x \left (- \frac {75}{64} - \frac {3 \log {\relax (2 )}^{4}}{16} + \frac {15 \log {\relax (2 )}^{2}}{16}\right ) + \frac {\left (25769803776 x^{2} - 103079215104 x \log {\relax (2 )}\right ) e^{3 x}}{8796093022208} + \frac {\left (- 38654705664 x^{3} + 206158430208 x^{2} + 309237645312 x^{2} \log {\relax (2 )} - 618475290624 x \log {\relax (2 )}^{2} + 515396075520 x\right ) e^{2 x}}{8796093022208} + \frac {\left (25769803776 x^{4} - 412316860416 x^{3} - 309237645312 x^{3} \log {\relax (2 )} - 1030792151040 x^{2} + 1236950581248 x^{2} \log {\relax (2 )}^{2} + 1649267441664 x^{2} \log {\relax (2 )} - 1649267441664 x \log {\relax (2 )}^{3} + 4123168604160 x \log {\relax (2 )}\right ) e^{x}}{8796093022208} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________