Optimal. Leaf size=36 \[ e^{x \left (e^{\frac {2 x}{-3-e^{\frac {3}{-x+\frac {x}{1-x}}}}}+x\right )} \]
________________________________________________________________________________________
Rubi [A] time = 10.72, antiderivative size = 29, normalized size of antiderivative = 0.81, number of steps used = 1, number of rules used = 1, integrand size = 168, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.006, Rules used = {6706} \begin {gather*} e^{x^2+e^{-\frac {2 x}{e^{\frac {3 (1-x)}{x^2}}+3}} x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{e^{-\frac {2 x}{3+e^{\frac {3 (1-x)}{x^2}}}} x+x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.19, size = 26, normalized size = 0.72 \begin {gather*} e^{x \left (e^{-\frac {2 x}{3+e^{\frac {3-3 x}{x^2}}}}+x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 24, normalized size = 0.67 \begin {gather*} e^{\left (x^{2} + x e^{\left (-\frac {2 \, x}{e^{\left (-\frac {3 \, {\left (x - 1\right )}}{x^{2}}\right )} + 3}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.64, size = 27, normalized size = 0.75 \begin {gather*} e^{\left (x^{2} + x e^{\left (-\frac {2 \, x}{e^{\left (-\frac {3}{x} + \frac {3}{x^{2}}\right )} + 3}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 23, normalized size = 0.64
method | result | size |
risch | \({\mathrm e}^{x \left ({\mathrm e}^{-\frac {2 x}{{\mathrm e}^{-\frac {3 \left (x -1\right )}{x^{2}}}+3}}+x \right )}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (12 \, x^{2} e^{\left (-\frac {3 \, {\left (x - 1\right )}}{x^{2}}\right )} + 2 \, x^{2} e^{\left (-\frac {6 \, {\left (x - 1\right )}}{x^{2}}\right )} + 18 \, x^{2} - {\left (6 \, x^{2} + 2 \, {\left (x^{2} - 6 \, x + 6\right )} e^{\left (-\frac {3 \, {\left (x - 1\right )}}{x^{2}}\right )} - x e^{\left (-\frac {6 \, {\left (x - 1\right )}}{x^{2}}\right )} - 9 \, x\right )} e^{\left (-\frac {2 \, x}{e^{\left (-\frac {3 \, {\left (x - 1\right )}}{x^{2}}\right )} + 3}\right )}\right )} e^{\left (x^{2} + x e^{\left (-\frac {2 \, x}{e^{\left (-\frac {3 \, {\left (x - 1\right )}}{x^{2}}\right )} + 3}\right )}\right )}}{6 \, x e^{\left (-\frac {3 \, {\left (x - 1\right )}}{x^{2}}\right )} + x e^{\left (-\frac {6 \, {\left (x - 1\right )}}{x^{2}}\right )} + 9 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.33, size = 29, normalized size = 0.81 \begin {gather*} {\mathrm {e}}^{x^2}\,{\mathrm {e}}^{x\,{\mathrm {e}}^{-\frac {2\,x}{{\mathrm {e}}^{-\frac {3}{x}}\,{\mathrm {e}}^{\frac {3}{x^2}}+3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 10.99, size = 22, normalized size = 0.61 \begin {gather*} e^{x^{2} + x e^{- \frac {2 x}{e^{\frac {3 - 3 x}{x^{2}}} + 3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________