Optimal. Leaf size=20 \[ \frac {7 x}{5 \left (e^3+x+e^{x^2} \log (x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {7 e^3-7 e^{x^2}+e^{x^2} \left (7-14 x^2\right ) \log (x)}{5 e^6+10 e^3 x+5 x^2+e^{x^2} \left (10 e^3+10 x\right ) \log (x)+5 e^{2 x^2} \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {7 \left (e^3-e^{x^2}-e^{x^2} \left (-1+2 x^2\right ) \log (x)\right )}{5 \left (e^3+x+e^{x^2} \log (x)\right )^2} \, dx\\ &=\frac {7}{5} \int \frac {e^3-e^{x^2}-e^{x^2} \left (-1+2 x^2\right ) \log (x)}{\left (e^3+x+e^{x^2} \log (x)\right )^2} \, dx\\ &=\frac {7}{5} \int \left (-\frac {1-\log (x)+2 x^2 \log (x)}{\log (x) \left (e^3+x+e^{x^2} \log (x)\right )}+\frac {e^3+x-x \log (x)+2 e^3 x^2 \log (x)+2 x^3 \log (x)}{\log (x) \left (e^3+x+e^{x^2} \log (x)\right )^2}\right ) \, dx\\ &=-\left (\frac {7}{5} \int \frac {1-\log (x)+2 x^2 \log (x)}{\log (x) \left (e^3+x+e^{x^2} \log (x)\right )} \, dx\right )+\frac {7}{5} \int \frac {e^3+x-x \log (x)+2 e^3 x^2 \log (x)+2 x^3 \log (x)}{\log (x) \left (e^3+x+e^{x^2} \log (x)\right )^2} \, dx\\ &=\frac {7}{5} \int \left (-\frac {x}{\left (e^3+x+e^{x^2} \log (x)\right )^2}+\frac {2 e^3 x^2}{\left (e^3+x+e^{x^2} \log (x)\right )^2}+\frac {2 x^3}{\left (e^3+x+e^{x^2} \log (x)\right )^2}+\frac {e^3}{\log (x) \left (e^3+x+e^{x^2} \log (x)\right )^2}+\frac {x}{\log (x) \left (e^3+x+e^{x^2} \log (x)\right )^2}\right ) \, dx-\frac {7}{5} \int \left (-\frac {1}{e^3+x+e^{x^2} \log (x)}+\frac {2 x^2}{e^3+x+e^{x^2} \log (x)}+\frac {1}{\log (x) \left (e^3+x+e^{x^2} \log (x)\right )}\right ) \, dx\\ &=-\left (\frac {7}{5} \int \frac {x}{\left (e^3+x+e^{x^2} \log (x)\right )^2} \, dx\right )+\frac {7}{5} \int \frac {x}{\log (x) \left (e^3+x+e^{x^2} \log (x)\right )^2} \, dx+\frac {7}{5} \int \frac {1}{e^3+x+e^{x^2} \log (x)} \, dx-\frac {7}{5} \int \frac {1}{\log (x) \left (e^3+x+e^{x^2} \log (x)\right )} \, dx+\frac {14}{5} \int \frac {x^3}{\left (e^3+x+e^{x^2} \log (x)\right )^2} \, dx-\frac {14}{5} \int \frac {x^2}{e^3+x+e^{x^2} \log (x)} \, dx+\frac {1}{5} \left (7 e^3\right ) \int \frac {1}{\log (x) \left (e^3+x+e^{x^2} \log (x)\right )^2} \, dx+\frac {1}{5} \left (14 e^3\right ) \int \frac {x^2}{\left (e^3+x+e^{x^2} \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 20, normalized size = 1.00 \begin {gather*} \frac {7 x}{5 \left (e^3+x+e^{x^2} \log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 16, normalized size = 0.80 \begin {gather*} \frac {7 \, x}{5 \, {\left (e^{\left (x^{2}\right )} \log \relax (x) + x + e^{3}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 16, normalized size = 0.80 \begin {gather*} \frac {7 \, x}{5 \, {\left (e^{\left (x^{2}\right )} \log \relax (x) + x + e^{3}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 17, normalized size = 0.85
method | result | size |
risch | \(\frac {7 x}{5 \left ({\mathrm e}^{3}+{\mathrm e}^{x^{2}} \ln \relax (x )+x \right )}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.74, size = 16, normalized size = 0.80 \begin {gather*} \frac {7 \, x}{5 \, {\left (e^{\left (x^{2}\right )} \log \relax (x) + x + e^{3}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.57, size = 110, normalized size = 5.50 \begin {gather*} \frac {7\,\left (2\,x^5\,{\ln \relax (x)}^2+2\,{\mathrm {e}}^3\,x^4\,{\ln \relax (x)}^2-x^3\,{\ln \relax (x)}^2+x^3\,\ln \relax (x)+{\mathrm {e}}^3\,x^2\,\ln \relax (x)\right )}{5\,\left ({\mathrm {e}}^{x^2}+\frac {x+{\mathrm {e}}^3}{\ln \relax (x)}\right )\,\left (2\,x^4\,{\ln \relax (x)}^3+2\,{\mathrm {e}}^3\,x^3\,{\ln \relax (x)}^3-x^2\,{\ln \relax (x)}^3+x^2\,{\ln \relax (x)}^2+{\mathrm {e}}^3\,x\,{\ln \relax (x)}^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 20, normalized size = 1.00 \begin {gather*} \frac {7 x}{5 x + 5 e^{x^{2}} \log {\relax (x )} + 5 e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________