Optimal. Leaf size=20 \[ e^{\left (2+\left (x+\frac {45 (5+x)}{1+x}\right )^2\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 7.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {2563093129+2096362816 x+688675888 x^2+115651112 x^3+10505414 x^4+513920 x^5+13600 x^6+184 x^7+x^8}{1+4 x+6 x^2+4 x^3+x^4}\right ) \left (-8156009700-4911736672 x-1030398440 x^2-73629456 x^3+2569600 x^4+595520 x^5+28488 x^6+560 x^7+4 x^8\right )}{1+5 x+10 x^2+10 x^3+5 x^4+x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 e^{\frac {\left (50627+20704 x+2568 x^2+92 x^3+x^4\right )^2}{(1+x)^4}} \left (-2039002425-1227934168 x-257599610 x^2-18407364 x^3+642400 x^4+148880 x^5+7122 x^6+140 x^7+x^8\right )}{(1+x)^5} \, dx\\ &=4 \int \frac {e^{\frac {\left (50627+20704 x+2568 x^2+92 x^3+x^4\right )^2}{(1+x)^4}} \left (-2039002425-1227934168 x-257599610 x^2-18407364 x^3+642400 x^4+148880 x^5+7122 x^6+140 x^7+x^8\right )}{(1+x)^5} \, dx\\ &=4 \int \left (115335 e^{\frac {\left (50627+20704 x+2568 x^2+92 x^3+x^4\right )^2}{(1+x)^4}}+6437 e^{\frac {\left (50627+20704 x+2568 x^2+92 x^3+x^4\right )^2}{(1+x)^4}} x+135 e^{\frac {\left (50627+20704 x+2568 x^2+92 x^3+x^4\right )^2}{(1+x)^4}} x^2+e^{\frac {\left (50627+20704 x+2568 x^2+92 x^3+x^4\right )^2}{(1+x)^4}} x^3-\frac {1049760000 e^{\frac {\left (50627+20704 x+2568 x^2+92 x^3+x^4\right )^2}{(1+x)^4}}}{(1+x)^5}-\frac {769824000 e^{\frac {\left (50627+20704 x+2568 x^2+92 x^3+x^4\right )^2}{(1+x)^4}}}{(1+x)^4}-\frac {199908000 e^{\frac {\left (50627+20704 x+2568 x^2+92 x^3+x^4\right )^2}{(1+x)^4}}}{(1+x)^3}-\frac {19625760 e^{\frac {\left (50627+20704 x+2568 x^2+92 x^3+x^4\right )^2}{(1+x)^4}}}{(1+x)^2}\right ) \, dx\\ &=4 \int e^{\frac {\left (50627+20704 x+2568 x^2+92 x^3+x^4\right )^2}{(1+x)^4}} x^3 \, dx+540 \int e^{\frac {\left (50627+20704 x+2568 x^2+92 x^3+x^4\right )^2}{(1+x)^4}} x^2 \, dx+25748 \int e^{\frac {\left (50627+20704 x+2568 x^2+92 x^3+x^4\right )^2}{(1+x)^4}} x \, dx+461340 \int e^{\frac {\left (50627+20704 x+2568 x^2+92 x^3+x^4\right )^2}{(1+x)^4}} \, dx-78503040 \int \frac {e^{\frac {\left (50627+20704 x+2568 x^2+92 x^3+x^4\right )^2}{(1+x)^4}}}{(1+x)^2} \, dx-799632000 \int \frac {e^{\frac {\left (50627+20704 x+2568 x^2+92 x^3+x^4\right )^2}{(1+x)^4}}}{(1+x)^3} \, dx-3079296000 \int \frac {e^{\frac {\left (50627+20704 x+2568 x^2+92 x^3+x^4\right )^2}{(1+x)^4}}}{(1+x)^4} \, dx-4199040000 \int \frac {e^{\frac {\left (50627+20704 x+2568 x^2+92 x^3+x^4\right )^2}{(1+x)^4}}}{(1+x)^5} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 4.19, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {2563093129+2096362816 x+688675888 x^2+115651112 x^3+10505414 x^4+513920 x^5+13600 x^6+184 x^7+x^8}{1+4 x+6 x^2+4 x^3+x^4}} \left (-8156009700-4911736672 x-1030398440 x^2-73629456 x^3+2569600 x^4+595520 x^5+28488 x^6+560 x^7+4 x^8\right )}{1+5 x+10 x^2+10 x^3+5 x^4+x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.69, size = 60, normalized size = 3.00 \begin {gather*} e^{\left (\frac {x^{8} + 184 \, x^{7} + 13600 \, x^{6} + 513920 \, x^{5} + 10505414 \, x^{4} + 115651112 \, x^{3} + 688675888 \, x^{2} + 2096362816 \, x + 2563093129}{x^{4} + 4 \, x^{3} + 6 \, x^{2} + 4 \, x + 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 221, normalized size = 11.05 \begin {gather*} e^{\left (\frac {x^{8}}{x^{4} + 4 \, x^{3} + 6 \, x^{2} + 4 \, x + 1} + \frac {184 \, x^{7}}{x^{4} + 4 \, x^{3} + 6 \, x^{2} + 4 \, x + 1} + \frac {13600 \, x^{6}}{x^{4} + 4 \, x^{3} + 6 \, x^{2} + 4 \, x + 1} + \frac {513920 \, x^{5}}{x^{4} + 4 \, x^{3} + 6 \, x^{2} + 4 \, x + 1} + \frac {10505414 \, x^{4}}{x^{4} + 4 \, x^{3} + 6 \, x^{2} + 4 \, x + 1} + \frac {115651112 \, x^{3}}{x^{4} + 4 \, x^{3} + 6 \, x^{2} + 4 \, x + 1} + \frac {688675888 \, x^{2}}{x^{4} + 4 \, x^{3} + 6 \, x^{2} + 4 \, x + 1} + \frac {2096362816 \, x}{x^{4} + 4 \, x^{3} + 6 \, x^{2} + 4 \, x + 1} + \frac {2563093129}{x^{4} + 4 \, x^{3} + 6 \, x^{2} + 4 \, x + 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F(-1)] time = 180.00, size = 0, normalized size = 0.00 hanged
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.46, size = 229, normalized size = 11.45 \begin {gather*} {\mathrm {e}}^{\frac {2563093129}{x^4+4\,x^3+6\,x^2+4\,x+1}}\,{\mathrm {e}}^{\frac {x^8}{x^4+4\,x^3+6\,x^2+4\,x+1}}\,{\mathrm {e}}^{\frac {184\,x^7}{x^4+4\,x^3+6\,x^2+4\,x+1}}\,{\mathrm {e}}^{\frac {13600\,x^6}{x^4+4\,x^3+6\,x^2+4\,x+1}}\,{\mathrm {e}}^{\frac {513920\,x^5}{x^4+4\,x^3+6\,x^2+4\,x+1}}\,{\mathrm {e}}^{\frac {10505414\,x^4}{x^4+4\,x^3+6\,x^2+4\,x+1}}\,{\mathrm {e}}^{\frac {115651112\,x^3}{x^4+4\,x^3+6\,x^2+4\,x+1}}\,{\mathrm {e}}^{\frac {2096362816\,x}{x^4+4\,x^3+6\,x^2+4\,x+1}}\,{\mathrm {e}}^{\frac {688675888\,x^2}{x^4+4\,x^3+6\,x^2+4\,x+1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.32, size = 58, normalized size = 2.90 \begin {gather*} e^{\frac {x^{8} + 184 x^{7} + 13600 x^{6} + 513920 x^{5} + 10505414 x^{4} + 115651112 x^{3} + 688675888 x^{2} + 2096362816 x + 2563093129}{x^{4} + 4 x^{3} + 6 x^{2} + 4 x + 1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________