Optimal. Leaf size=24 \[ 5+x+\log \left (-5+e^x+\frac {e^2}{x}+x+x^2-\log (25)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.48, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^2 (-1+x)-4 x^2+2 e^x x^2+3 x^3+x^4-x^2 \log (25)}{e^2 x-5 x^2+e^x x^2+x^3+x^4-x^2 \log (25)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^2 (-1+x)-4 x^2+2 e^x x^2+3 x^3+x^4-x^2 \log (25)}{e^2 x+e^x x^2+x^3+x^4+x^2 (-5-\log (25))} \, dx\\ &=\int \frac {e^2 (-1+x)+2 e^x x^2+3 x^3+x^4+x^2 (-4-\log (25))}{e^2 x+e^x x^2+x^3+x^4+x^2 (-5-\log (25))} \, dx\\ &=\int \left (2+\frac {-e^2-e^2 x+x^3-x^4+x^2 (6+\log (25))}{x \left (e^2+e^x x+x^2+x^3-5 x \left (1+\frac {2 \log (5)}{5}\right )\right )}\right ) \, dx\\ &=2 x+\int \frac {-e^2-e^2 x+x^3-x^4+x^2 (6+\log (25))}{x \left (e^2+e^x x+x^2+x^3-5 x \left (1+\frac {2 \log (5)}{5}\right )\right )} \, dx\\ &=2 x+\int \left (\frac {x^2}{e^2+e^x x+x^2+x^3-5 x \left (1+\frac {2 \log (5)}{5}\right )}+\frac {e^2}{-e^2-e^x x-x^2-x^3+5 x \left (1+\frac {2 \log (5)}{5}\right )}+\frac {e^2}{x \left (-e^2-e^x x-x^2-x^3+5 x \left (1+\frac {2 \log (5)}{5}\right )\right )}+\frac {x^3}{-e^2-e^x x-x^2-x^3+5 x \left (1+\frac {2 \log (5)}{5}\right )}+\frac {x (6+\log (25))}{e^2+e^x x+x^2+x^3-5 x \left (1+\frac {2 \log (5)}{5}\right )}\right ) \, dx\\ &=2 x+e^2 \int \frac {1}{-e^2-e^x x-x^2-x^3+5 x \left (1+\frac {2 \log (5)}{5}\right )} \, dx+e^2 \int \frac {1}{x \left (-e^2-e^x x-x^2-x^3+5 x \left (1+\frac {2 \log (5)}{5}\right )\right )} \, dx+(6+\log (25)) \int \frac {x}{e^2+e^x x+x^2+x^3-5 x \left (1+\frac {2 \log (5)}{5}\right )} \, dx+\int \frac {x^2}{e^2+e^x x+x^2+x^3-5 x \left (1+\frac {2 \log (5)}{5}\right )} \, dx+\int \frac {x^3}{-e^2-e^x x-x^2-x^3+5 x \left (1+\frac {2 \log (5)}{5}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.48, size = 30, normalized size = 1.25 \begin {gather*} x-\log (x)+\log \left (e^2-5 x+e^x x+x^2+x^3-x \log (25)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 28, normalized size = 1.17 \begin {gather*} x + \log \left (\frac {x^{3} + x^{2} + x e^{x} - 2 \, x \log \relax (5) - 5 \, x + e^{2}}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 28, normalized size = 1.17 \begin {gather*} x + \log \left (x^{3} + x^{2} + x e^{x} - 2 \, x \log \relax (5) - 5 \, x + e^{2}\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 35, normalized size = 1.46
method | result | size |
risch | \(x +\ln \left ({\mathrm e}^{x}-\frac {-x^{3}+2 x \ln \relax (5)-x^{2}-{\mathrm e}^{2}+5 x}{x}\right )\) | \(35\) |
norman | \(x -\ln \relax (x )+\ln \left (-x^{3}+2 x \ln \relax (5)-{\mathrm e}^{x} x -x^{2}-{\mathrm e}^{2}+5 x \right )\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 29, normalized size = 1.21 \begin {gather*} x + \log \left (\frac {x^{3} + x^{2} - x {\left (2 \, \log \relax (5) + 5\right )} + x e^{x} + e^{2}}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.27, size = 28, normalized size = 1.17 \begin {gather*} x+\ln \left (\frac {{\mathrm {e}}^2-5\,x-2\,x\,\ln \relax (5)+x\,{\mathrm {e}}^x+x^2+x^3}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 27, normalized size = 1.12 \begin {gather*} x + \log {\left (e^{x} + \frac {x^{3} + x^{2} - 5 x - 2 x \log {\relax (5 )} + e^{2}}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________