Optimal. Leaf size=13 \[ \frac {3 \left (1+\frac {2}{x}\right )}{\log (x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.32, antiderivative size = 16, normalized size of antiderivative = 1.23, number of steps used = 13, number of rules used = 9, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.529, Rules used = {6741, 12, 6742, 2353, 2306, 2309, 2178, 2302, 30} \begin {gather*} \frac {6}{x \log (x)}+\frac {3}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2178
Rule 2302
Rule 2306
Rule 2309
Rule 2353
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 (-2-x-2 \log (x))}{x^2 \log ^2(x)} \, dx\\ &=3 \int \frac {-2-x-2 \log (x)}{x^2 \log ^2(x)} \, dx\\ &=3 \int \left (\frac {-2-x}{x^2 \log ^2(x)}-\frac {2}{x^2 \log (x)}\right ) \, dx\\ &=3 \int \frac {-2-x}{x^2 \log ^2(x)} \, dx-6 \int \frac {1}{x^2 \log (x)} \, dx\\ &=3 \int \left (-\frac {2}{x^2 \log ^2(x)}-\frac {1}{x \log ^2(x)}\right ) \, dx-6 \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (x)\right )\\ &=-6 \text {Ei}(-\log (x))-3 \int \frac {1}{x \log ^2(x)} \, dx-6 \int \frac {1}{x^2 \log ^2(x)} \, dx\\ &=-6 \text {Ei}(-\log (x))+\frac {6}{x \log (x)}-3 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (x)\right )+6 \int \frac {1}{x^2 \log (x)} \, dx\\ &=-6 \text {Ei}(-\log (x))+\frac {3}{\log (x)}+\frac {6}{x \log (x)}+6 \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (x)\right )\\ &=\frac {3}{\log (x)}+\frac {6}{x \log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 16, normalized size = 1.23 \begin {gather*} \frac {3}{\log (x)}+\frac {6}{x \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.96, size = 12, normalized size = 0.92 \begin {gather*} \frac {3 \, {\left (x + 2\right )}}{x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 12, normalized size = 0.92 \begin {gather*} \frac {3 \, {\left (x + 2\right )}}{x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 13, normalized size = 1.00
method | result | size |
risch | \(\frac {6+3 x}{x \ln \relax (x )}\) | \(13\) |
norman | \(\frac {6+3 x}{x \ln \relax (x )}\) | \(14\) |
default | \(\frac {3}{\ln \relax (x )}+\frac {6}{x \ln \relax (x )}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.52, size = 20, normalized size = 1.54 \begin {gather*} \frac {3}{\log \relax (x)} - 6 \, {\rm Ei}\left (-\log \relax (x)\right ) + 6 \, \Gamma \left (-1, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.34, size = 12, normalized size = 0.92 \begin {gather*} \frac {3\,\left (x+2\right )}{x\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.08, size = 8, normalized size = 0.62 \begin {gather*} \frac {3 x + 6}{x \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________