Optimal. Leaf size=27 \[ e^{e^{5+e^x+x}+4 \left (-x^2+\frac {25}{\log ^2(5)}\right )} x \]
________________________________________________________________________________________
Rubi [B] time = 0.08, antiderivative size = 63, normalized size of antiderivative = 2.33, number of steps used = 1, number of rules used = 1, integrand size = 90, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.011, Rules used = {2288} \begin {gather*} \frac {e^{e^{x+e^x+5}} \left (x e^{\frac {4 \left (25-x^2 \log ^2(5)\right )}{\log ^2(5)}}+x e^{\frac {4 \left (25-x^2 \log ^2(5)\right )}{\log ^2(5)}+x}\right )}{e^x+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^{e^{5+e^x+x}} \left (e^{\frac {4 \left (25-x^2 \log ^2(5)\right )}{\log ^2(5)}} x+e^{x+\frac {4 \left (25-x^2 \log ^2(5)\right )}{\log ^2(5)}} x\right )}{1+e^x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.38, size = 24, normalized size = 0.89 \begin {gather*} e^{e^{5+e^x+x}-4 x^2+\frac {100}{\log ^2(5)}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 35, normalized size = 1.30 \begin {gather*} x e^{\left (-x - \frac {{\left (4 \, x^{2} - x\right )} \log \relax (5)^{2} - 100}{\log \relax (5)^{2}} + e^{\left (x + e^{x} + 5\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 33, normalized size = 1.22
method | result | size |
risch | \(x \,{\mathrm e}^{-\frac {4 x^{2} \ln \relax (5)^{2}-{\mathrm e}^{{\mathrm e}^{x}+5+x} \ln \relax (5)^{2}-100}{\ln \relax (5)^{2}}}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.82, size = 21, normalized size = 0.78 \begin {gather*} x e^{\left (-4 \, x^{2} + \frac {100}{\log \relax (5)^{2}} + e^{\left (x + e^{x} + 5\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.50, size = 24, normalized size = 0.89 \begin {gather*} x\,{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^5\,{\mathrm {e}}^x}\,{\mathrm {e}}^{\frac {100}{{\ln \relax (5)}^2}}\,{\mathrm {e}}^{-4\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 22.08, size = 29, normalized size = 1.07 \begin {gather*} x e^{\frac {- 4 x^{2} \log {\relax (5 )}^{2} + 100}{\log {\relax (5 )}^{2}}} e^{e^{x + e^{x} + 5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________