Optimal. Leaf size=30 \[ \frac {2 e^{e^5} x}{\log \left (e^5+x^2+3 \log \left (-2+\frac {x^2}{2}\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.95, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{e^5} \left (4 x^2-4 x^4\right )+\left (e^{e^5} \left (-8 x^2+2 x^4+e^5 \left (-8+2 x^2\right )\right )+e^{e^5} \left (-24+6 x^2\right ) \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right ) \log \left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )}{\left (-4 x^2+x^4+e^5 \left (-4+x^2\right )+\left (-12+3 x^2\right ) \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right ) \log ^2\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{e^5} \left (-\frac {2 x^2 \left (-1+x^2\right )}{\left (-4+x^2\right ) \left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )}+\log \left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )\right )}{\log ^2\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )} \, dx\\ &=\left (2 e^{e^5}\right ) \int \frac {-\frac {2 x^2 \left (-1+x^2\right )}{\left (-4+x^2\right ) \left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )}+\log \left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )}{\log ^2\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )} \, dx\\ &=\left (2 e^{e^5}\right ) \int \left (-\frac {2 x^2 \left (-1+x^2\right )}{(-2+x) (2+x) \left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right ) \log ^2\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )}+\frac {1}{\log \left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )}\right ) \, dx\\ &=\left (2 e^{e^5}\right ) \int \frac {1}{\log \left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )} \, dx-\left (4 e^{e^5}\right ) \int \frac {x^2 \left (-1+x^2\right )}{(-2+x) (2+x) \left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right ) \log ^2\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )} \, dx\\ &=\left (2 e^{e^5}\right ) \int \frac {1}{\log \left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )} \, dx-\left (4 e^{e^5}\right ) \int \frac {x^2 \left (-1+x^2\right )}{\left (-4+x^2\right ) \left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right ) \log ^2\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )} \, dx\\ &=\left (2 e^{e^5}\right ) \int \frac {1}{\log \left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )} \, dx-\left (4 e^{e^5}\right ) \int \left (\frac {3}{\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right ) \log ^2\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )}+\frac {x^2}{\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right ) \log ^2\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )}+\frac {12}{\left (-4+x^2\right ) \left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right ) \log ^2\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )}\right ) \, dx\\ &=\left (2 e^{e^5}\right ) \int \frac {1}{\log \left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )} \, dx-\left (4 e^{e^5}\right ) \int \frac {x^2}{\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right ) \log ^2\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )} \, dx-\left (12 e^{e^5}\right ) \int \frac {1}{\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right ) \log ^2\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )} \, dx-\left (48 e^{e^5}\right ) \int \frac {1}{\left (-4+x^2\right ) \left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right ) \log ^2\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )} \, dx\\ &=\left (2 e^{e^5}\right ) \int \frac {1}{\log \left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )} \, dx-\left (4 e^{e^5}\right ) \int \frac {x^2}{\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right ) \log ^2\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )} \, dx-\left (12 e^{e^5}\right ) \int \frac {1}{\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right ) \log ^2\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )} \, dx-\left (48 e^{e^5}\right ) \int \left (\frac {1}{4 (-2+x) \left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right ) \log ^2\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )}-\frac {1}{4 (2+x) \left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right ) \log ^2\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )}\right ) \, dx\\ &=\left (2 e^{e^5}\right ) \int \frac {1}{\log \left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )} \, dx-\left (4 e^{e^5}\right ) \int \frac {x^2}{\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right ) \log ^2\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )} \, dx-\left (12 e^{e^5}\right ) \int \frac {1}{\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right ) \log ^2\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )} \, dx-\left (12 e^{e^5}\right ) \int \frac {1}{(-2+x) \left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right ) \log ^2\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )} \, dx+\left (12 e^{e^5}\right ) \int \frac {1}{(2+x) \left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right ) \log ^2\left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 30, normalized size = 1.00 \begin {gather*} \frac {2 e^{e^5} x}{\log \left (e^5+x^2+3 \log \left (\frac {1}{2} \left (-4+x^2\right )\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.14, size = 25, normalized size = 0.83 \begin {gather*} \frac {2 \, x e^{\left (e^{5}\right )}}{\log \left (x^{2} + e^{5} + 3 \, \log \left (\frac {1}{2} \, x^{2} - 2\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.61, size = 121, normalized size = 4.03 \begin {gather*} \frac {2 \, {\left (x^{3} e^{\left (e^{5}\right )} + 3 \, x e^{\left (e^{5}\right )} \log \left (\frac {1}{2} \, x^{2} - 2\right ) + x e^{\left (e^{5} + 5\right )}\right )}}{x^{2} \log \left (x^{2} + e^{5} + 3 \, \log \left (\frac {1}{2} \, x^{2} - 2\right )\right ) + e^{5} \log \left (x^{2} + e^{5} + 3 \, \log \left (\frac {1}{2} \, x^{2} - 2\right )\right ) - 3 \, \log \relax (2) \log \left (x^{2} + e^{5} + 3 \, \log \left (\frac {1}{2} \, x^{2} - 2\right )\right ) + 3 \, \log \left (x^{2} + e^{5} + 3 \, \log \left (\frac {1}{2} \, x^{2} - 2\right )\right ) \log \left (x^{2} - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 26, normalized size = 0.87
method | result | size |
risch | \(\frac {2 \,{\mathrm e}^{{\mathrm e}^{5}} x}{\ln \left (3 \ln \left (\frac {x^{2}}{2}-2\right )+x^{2}+{\mathrm e}^{5}\right )}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.71, size = 31, normalized size = 1.03 \begin {gather*} \frac {2 \, x e^{\left (e^{5}\right )}}{\log \left (x^{2} + e^{5} - 3 \, \log \relax (2) + 3 \, \log \left (x + 2\right ) + 3 \, \log \left (x - 2\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.97, size = 64, normalized size = 2.13 \begin {gather*} x\,{\mathrm {e}}^{{\mathrm {e}}^5}+\frac {2\,x\,{\mathrm {e}}^{{\mathrm {e}}^5}}{\ln \left (3\,\ln \left (\frac {x^2}{2}-2\right )+{\mathrm {e}}^5+x^2\right )}-\frac {x^2\,{\mathrm {e}}^{{\mathrm {e}}^5}}{x-x^3}+\frac {x^4\,{\mathrm {e}}^{{\mathrm {e}}^5}}{x-x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 26, normalized size = 0.87 \begin {gather*} \frac {2 x e^{e^{5}}}{\log {\left (x^{2} + 3 \log {\left (\frac {x^{2}}{2} - 2 \right )} + e^{5} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________