Optimal. Leaf size=27 \[ 8+2 x-x (4+x)-\left (x+\frac {2 x}{3 \log (\log (x))}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 0.33, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8 x+(12 x-8 x \log (x)) \log (\log (x))-24 x \log (x) \log ^2(\log (x))+(-18-36 x) \log (x) \log ^3(\log (x))}{9 \log (x) \log ^3(\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{9} \int \frac {8 x+(12 x-8 x \log (x)) \log (\log (x))-24 x \log (x) \log ^2(\log (x))+(-18-36 x) \log (x) \log ^3(\log (x))}{\log (x) \log ^3(\log (x))} \, dx\\ &=\frac {1}{9} \int \left (-18 (1+2 x)+\frac {8 x}{\log (x) \log ^3(\log (x))}-\frac {4 x (-3+2 \log (x))}{\log (x) \log ^2(\log (x))}-\frac {24 x}{\log (\log (x))}\right ) \, dx\\ &=-\frac {1}{2} (1+2 x)^2-\frac {4}{9} \int \frac {x (-3+2 \log (x))}{\log (x) \log ^2(\log (x))} \, dx+\frac {8}{9} \int \frac {x}{\log (x) \log ^3(\log (x))} \, dx-\frac {8}{3} \int \frac {x}{\log (\log (x))} \, dx\\ &=-\frac {1}{2} (1+2 x)^2-\frac {4}{9} \int \left (\frac {2 x}{\log ^2(\log (x))}-\frac {3 x}{\log (x) \log ^2(\log (x))}\right ) \, dx+\frac {8}{9} \int \frac {x}{\log (x) \log ^3(\log (x))} \, dx-\frac {8}{3} \int \frac {x}{\log (\log (x))} \, dx\\ &=-\frac {1}{2} (1+2 x)^2+\frac {8}{9} \int \frac {x}{\log (x) \log ^3(\log (x))} \, dx-\frac {8}{9} \int \frac {x}{\log ^2(\log (x))} \, dx+\frac {4}{3} \int \frac {x}{\log (x) \log ^2(\log (x))} \, dx-\frac {8}{3} \int \frac {x}{\log (\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 33, normalized size = 1.22 \begin {gather*} -2 x-2 x^2-\frac {4 x^2}{9 \log ^2(\log (x))}-\frac {4 x^2}{3 \log (\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 33, normalized size = 1.22 \begin {gather*} -\frac {2 \, {\left (6 \, x^{2} \log \left (\log \relax (x)\right ) + 9 \, {\left (x^{2} + x\right )} \log \left (\log \relax (x)\right )^{2} + 2 \, x^{2}\right )}}{9 \, \log \left (\log \relax (x)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {2 \, {\left (9 \, {\left (2 \, x + 1\right )} \log \relax (x) \log \left (\log \relax (x)\right )^{3} + 12 \, x \log \relax (x) \log \left (\log \relax (x)\right )^{2} + 2 \, {\left (2 \, x \log \relax (x) - 3 \, x\right )} \log \left (\log \relax (x)\right ) - 4 \, x\right )}}{9 \, \log \relax (x) \log \left (\log \relax (x)\right )^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 27, normalized size = 1.00
method | result | size |
risch | \(-2 x^{2}-2 x -\frac {4 x^{2} \left (3 \ln \left (\ln \relax (x )\right )+1\right )}{9 \ln \left (\ln \relax (x )\right )^{2}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.75, size = 28, normalized size = 1.04 \begin {gather*} -2 \, x^{2} - 2 \, x - \frac {4 \, {\left (3 \, x^{2} \log \left (\log \relax (x)\right ) + x^{2}\right )}}{9 \, \log \left (\log \relax (x)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.17, size = 29, normalized size = 1.07 \begin {gather*} -2\,x-2\,x^2-\frac {4\,x^2}{3\,\ln \left (\ln \relax (x)\right )}-\frac {4\,x^2}{9\,{\ln \left (\ln \relax (x)\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 32, normalized size = 1.19 \begin {gather*} - 2 x^{2} - 2 x + \frac {- 12 x^{2} \log {\left (\log {\relax (x )} \right )} - 4 x^{2}}{9 \log {\left (\log {\relax (x )} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________