Optimal. Leaf size=27 \[ \frac {\left (-\frac {x}{2}+x \left (e^{1+x}+\frac {10 \log (2)}{x}\right )\right )^2}{x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 42, normalized size of antiderivative = 1.56, number of steps used = 10, number of rules used = 6, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {14, 2194, 37, 2199, 2177, 2178} \begin {gather*} \frac {(x-20 \log (2))^2}{4 x^2}-e^{x+1}+e^{2 x+2}+\frac {20 e^{x+1} \log (2)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 37
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2 e^{2+2 x}+\frac {10 (x-20 \log (2)) \log (2)}{x^3}-\frac {e^{1+x} \left (x^2+20 \log (2)-20 x \log (2)\right )}{x^2}\right ) \, dx\\ &=2 \int e^{2+2 x} \, dx+(10 \log (2)) \int \frac {x-20 \log (2)}{x^3} \, dx-\int \frac {e^{1+x} \left (x^2+20 \log (2)-20 x \log (2)\right )}{x^2} \, dx\\ &=e^{2+2 x}+\frac {(x-20 \log (2))^2}{4 x^2}-\int \left (e^{1+x}+\frac {20 e^{1+x} \log (2)}{x^2}-\frac {20 e^{1+x} \log (2)}{x}\right ) \, dx\\ &=e^{2+2 x}+\frac {(x-20 \log (2))^2}{4 x^2}-(20 \log (2)) \int \frac {e^{1+x}}{x^2} \, dx+(20 \log (2)) \int \frac {e^{1+x}}{x} \, dx-\int e^{1+x} \, dx\\ &=-e^{1+x}+e^{2+2 x}+\frac {(x-20 \log (2))^2}{4 x^2}+\frac {20 e^{1+x} \log (2)}{x}+20 e \text {Ei}(x) \log (2)-(20 \log (2)) \int \frac {e^{1+x}}{x} \, dx\\ &=-e^{1+x}+e^{2+2 x}+\frac {(x-20 \log (2))^2}{4 x^2}+\frac {20 e^{1+x} \log (2)}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 43, normalized size = 1.59 \begin {gather*} -e^{1+x}+e^{2+2 x}-\frac {10 \log (2)}{x}+\frac {20 e^{1+x} \log (2)}{x}+\frac {100 \log ^2(2)}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 41, normalized size = 1.52 \begin {gather*} \frac {x^{2} e^{\left (2 \, x + 2\right )} - {\left (x^{2} - 20 \, x \log \relax (2)\right )} e^{\left (x + 1\right )} - 10 \, x \log \relax (2) + 100 \, \log \relax (2)^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 44, normalized size = 1.63 \begin {gather*} \frac {x^{2} e^{\left (2 \, x + 2\right )} - x^{2} e^{\left (x + 1\right )} + 20 \, x e^{\left (x + 1\right )} \log \relax (2) - 10 \, x \log \relax (2) + 100 \, \log \relax (2)^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 40, normalized size = 1.48
method | result | size |
risch | \(\frac {100 \ln \relax (2)^{2}-10 x \ln \relax (2)}{x^{2}}+{\mathrm e}^{2 x +2}+\frac {\left (20 \ln \relax (2)-x \right ) {\mathrm e}^{x +1}}{x}\) | \(40\) |
derivativedivides | \(\frac {100 \ln \relax (2)^{2}}{x^{2}}-{\mathrm e}^{x +1}+\frac {20 \ln \relax (2) {\mathrm e}^{x +1}}{x}+{\mathrm e}^{2 x +2}-\frac {10 \ln \relax (2)}{x}\) | \(41\) |
default | \(\frac {100 \ln \relax (2)^{2}}{x^{2}}-{\mathrm e}^{x +1}+\frac {20 \ln \relax (2) {\mathrm e}^{x +1}}{x}+{\mathrm e}^{2 x +2}-\frac {10 \ln \relax (2)}{x}\) | \(41\) |
norman | \(\frac {x^{2} {\mathrm e}^{2 x +2}+100 \ln \relax (2)^{2}-10 x \ln \relax (2)-x^{2} {\mathrm e}^{x +1}+20 \,{\mathrm e}^{x +1} \ln \relax (2) x}{x^{2}}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.50, size = 48, normalized size = 1.78 \begin {gather*} 20 \, {\rm Ei}\relax (x) e \log \relax (2) - 20 \, e \Gamma \left (-1, -x\right ) \log \relax (2) - \frac {10 \, \log \relax (2)}{x} + \frac {100 \, \log \relax (2)^{2}}{x^{2}} + e^{\left (2 \, x + 2\right )} - e^{\left (x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 40, normalized size = 1.48 \begin {gather*} {\mathrm {e}}^{2\,x+2}-{\mathrm {e}}^{x+1}-\frac {x\,\left (10\,\ln \relax (2)-20\,{\mathrm {e}}^{x+1}\,\ln \relax (2)\right )-100\,{\ln \relax (2)}^2}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 37, normalized size = 1.37 \begin {gather*} \frac {x e^{2 x + 2} + \left (- x + 20 \log {\relax (2 )}\right ) e^{x + 1}}{x} + \frac {- 10 x \log {\relax (2 )} + 100 \log {\relax (2 )}^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________