Optimal. Leaf size=30 \[ \frac {\left (-2-\frac {4}{x}+x-5 \left (5+x+e^x x (-x+\log (4))\right )\right )^2}{x^2} \]
________________________________________________________________________________________
Rubi [C] time = 0.34, antiderivative size = 174, normalized size of antiderivative = 5.80, number of steps used = 23, number of rules used = 7, integrand size = 108, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {14, 2199, 2176, 2194, 2177, 2178, 2196} \begin {gather*} -40 \log (4) \text {Ei}(x)+10 (4-23 \log (4)) \text {Ei}(x)-10 (4-27 \log (4)) \text {Ei}(x)+\frac {16}{x^4}+\frac {216}{x^3}+25 e^{2 x} x^2+\frac {761}{x^2}+\frac {40 e^x \log (4)}{x^2}-40 e^x x-25 e^{2 x} x+40 e^x+\frac {25 e^{2 x}}{2}+\frac {216}{x}+25 e^{2 x} x (1-2 \log (4))-10 e^x (31-\log (256))-\frac {25}{2} e^{2 x} (1-\log (16))-25 e^{2 x} (1-\log (4)) \log (4)+\frac {40 e^x \log (4)}{x}-\frac {10 e^x (4-23 \log (4))}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2196
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {2 \left (32+324 x+761 x^2+108 x^3\right )}{x^5}+\frac {10 e^x \left (-4 x^4-x^2 (4-27 \log (4))+x (4-23 \log (4))-x^3 (31-4 \log (4))-8 \log (4)\right )}{x^3}+50 e^{2 x} (x-\log (4)) (1+x-\log (4))\right ) \, dx\\ &=-\left (2 \int \frac {32+324 x+761 x^2+108 x^3}{x^5} \, dx\right )+10 \int \frac {e^x \left (-4 x^4-x^2 (4-27 \log (4))+x (4-23 \log (4))-x^3 (31-4 \log (4))-8 \log (4)\right )}{x^3} \, dx+50 \int e^{2 x} (x-\log (4)) (1+x-\log (4)) \, dx\\ &=-\left (2 \int \left (\frac {32}{x^5}+\frac {324}{x^4}+\frac {761}{x^3}+\frac {108}{x^2}\right ) \, dx\right )+10 \int \left (-4 e^x x-31 e^x \left (1-\frac {8 \log (2)}{31}\right )+\frac {e^x (4-23 \log (4))}{x^2}-\frac {8 e^x \log (4)}{x^3}+\frac {e^x (-4+27 \log (4))}{x}\right ) \, dx+50 \int \left (e^{2 x} x^2+e^{2 x} x (1-2 \log (4))+e^{2 x} (-1+\log (4)) \log (4)\right ) \, dx\\ &=\frac {16}{x^4}+\frac {216}{x^3}+\frac {761}{x^2}+\frac {216}{x}-40 \int e^x x \, dx+50 \int e^{2 x} x^2 \, dx-(10 (31-8 \log (2))) \int e^x \, dx-(10 (4-27 \log (4))) \int \frac {e^x}{x} \, dx+(10 (4-23 \log (4))) \int \frac {e^x}{x^2} \, dx+(50 (1-2 \log (4))) \int e^{2 x} x \, dx-(80 \log (4)) \int \frac {e^x}{x^3} \, dx-(50 (1-\log (4)) \log (4)) \int e^{2 x} \, dx\\ &=\frac {16}{x^4}+\frac {216}{x^3}+\frac {761}{x^2}+\frac {216}{x}-40 e^x x+25 e^{2 x} x^2-10 e^x (31-8 \log (2))-10 \text {Ei}(x) (4-27 \log (4))-\frac {10 e^x (4-23 \log (4))}{x}+25 e^{2 x} x (1-2 \log (4))+\frac {40 e^x \log (4)}{x^2}-25 e^{2 x} (1-\log (4)) \log (4)+40 \int e^x \, dx-50 \int e^{2 x} x \, dx+(10 (4-23 \log (4))) \int \frac {e^x}{x} \, dx-(25 (1-2 \log (4))) \int e^{2 x} \, dx-(40 \log (4)) \int \frac {e^x}{x^2} \, dx\\ &=40 e^x+\frac {16}{x^4}+\frac {216}{x^3}+\frac {761}{x^2}+\frac {216}{x}-40 e^x x-25 e^{2 x} x+25 e^{2 x} x^2-10 e^x (31-8 \log (2))-10 \text {Ei}(x) (4-27 \log (4))-\frac {10 e^x (4-23 \log (4))}{x}+10 \text {Ei}(x) (4-23 \log (4))-\frac {25}{2} e^{2 x} (1-2 \log (4))+25 e^{2 x} x (1-2 \log (4))+\frac {40 e^x \log (4)}{x^2}+\frac {40 e^x \log (4)}{x}-25 e^{2 x} (1-\log (4)) \log (4)+25 \int e^{2 x} \, dx-(40 \log (4)) \int \frac {e^x}{x} \, dx\\ &=40 e^x+\frac {25 e^{2 x}}{2}+\frac {16}{x^4}+\frac {216}{x^3}+\frac {761}{x^2}+\frac {216}{x}-40 e^x x-25 e^{2 x} x+25 e^{2 x} x^2-10 e^x (31-8 \log (2))-10 \text {Ei}(x) (4-27 \log (4))-\frac {10 e^x (4-23 \log (4))}{x}+10 \text {Ei}(x) (4-23 \log (4))-\frac {25}{2} e^{2 x} (1-2 \log (4))+25 e^{2 x} x (1-2 \log (4))+\frac {40 e^x \log (4)}{x^2}+\frac {40 e^x \log (4)}{x}-40 \text {Ei}(x) \log (4)-25 e^{2 x} (1-\log (4)) \log (4)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.15, size = 95, normalized size = 3.17 \begin {gather*} 2 \left (\frac {8}{x^4}+\frac {108}{x^3}+\frac {761}{2 x^2}+\frac {108}{x}+e^{2 x} \left (\frac {25 x^2}{2}-\frac {25}{2} x \log (16)+\frac {25}{4} \left (-2 \log (4)+2 \log ^2(4)+\log (16)\right )\right )+e^x \left (-20 x+\frac {20 \log (4)}{x^2}+\frac {5 (-4+27 \log (4))}{x}+5 (-27+\log (256))\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.83, size = 85, normalized size = 2.83 \begin {gather*} \frac {216 \, x^{3} + 761 \, x^{2} + 25 \, {\left (x^{6} - 4 \, x^{5} \log \relax (2) + 4 \, x^{4} \log \relax (2)^{2}\right )} e^{\left (2 \, x\right )} - 10 \, {\left (4 \, x^{5} + 27 \, x^{4} + 4 \, x^{3} - 2 \, {\left (4 \, x^{4} + 27 \, x^{3} + 4 \, x^{2}\right )} \log \relax (2)\right )} e^{x} + 216 \, x + 16}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.16, size = 100, normalized size = 3.33 \begin {gather*} \frac {25 \, x^{6} e^{\left (2 \, x\right )} - 100 \, x^{5} e^{\left (2 \, x\right )} \log \relax (2) + 100 \, x^{4} e^{\left (2 \, x\right )} \log \relax (2)^{2} - 40 \, x^{5} e^{x} + 80 \, x^{4} e^{x} \log \relax (2) - 270 \, x^{4} e^{x} + 540 \, x^{3} e^{x} \log \relax (2) - 40 \, x^{3} e^{x} + 80 \, x^{2} e^{x} \log \relax (2) + 216 \, x^{3} + 761 \, x^{2} + 216 \, x + 16}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 80, normalized size = 2.67
method | result | size |
risch | \(\frac {216 x^{3}+761 x^{2}+216 x +16}{x^{4}}+\left (100 \ln \relax (2)^{2}-100 x \ln \relax (2)+25 x^{2}\right ) {\mathrm e}^{2 x}+\frac {10 \left (8 x^{2} \ln \relax (2)-4 x^{3}+54 x \ln \relax (2)-27 x^{2}+8 \ln \relax (2)-4 x \right ) {\mathrm e}^{x}}{x^{2}}\) | \(80\) |
default | \(\frac {16}{x^{4}}+\frac {216}{x^{3}}+\frac {761}{x^{2}}+\frac {216}{x}-\frac {40 \,{\mathrm e}^{x}}{x}-40 \,{\mathrm e}^{x} x -270 \,{\mathrm e}^{x}+80 \,{\mathrm e}^{x} \ln \relax (2)+25 \,{\mathrm e}^{2 x} x^{2}+100 \ln \relax (2)^{2} {\mathrm e}^{2 x}+\frac {80 \ln \relax (2) {\mathrm e}^{x}}{x^{2}}+\frac {540 \ln \relax (2) {\mathrm e}^{x}}{x}-100 x \ln \relax (2) {\mathrm e}^{2 x}\) | \(90\) |
norman | \(\frac {16+\left (-270+80 \ln \relax (2)\right ) x^{4} {\mathrm e}^{x}+\left (540 \ln \relax (2)-40\right ) x^{3} {\mathrm e}^{x}+216 x +761 x^{2}+216 x^{3}-40 x^{5} {\mathrm e}^{x}+25 x^{6} {\mathrm e}^{2 x}+80 x^{2} \ln \relax (2) {\mathrm e}^{x}+100 x^{4} \ln \relax (2)^{2} {\mathrm e}^{2 x}-100 \,{\mathrm e}^{2 x} \ln \relax (2) x^{5}}{x^{4}}\) | \(93\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.47, size = 131, normalized size = 4.37 \begin {gather*} -50 \, {\left (2 \, x - 1\right )} e^{\left (2 \, x\right )} \log \relax (2) + 100 \, e^{\left (2 \, x\right )} \log \relax (2)^{2} + \frac {25}{2} \, {\left (2 \, x^{2} - 2 \, x + 1\right )} e^{\left (2 \, x\right )} + \frac {25}{2} \, {\left (2 \, x - 1\right )} e^{\left (2 \, x\right )} - 40 \, {\left (x - 1\right )} e^{x} + 540 \, {\rm Ei}\relax (x) \log \relax (2) - 50 \, e^{\left (2 \, x\right )} \log \relax (2) + 80 \, e^{x} \log \relax (2) - 460 \, \Gamma \left (-1, -x\right ) \log \relax (2) + 160 \, \Gamma \left (-2, -x\right ) \log \relax (2) + \frac {216}{x} + \frac {761}{x^{2}} + \frac {216}{x^{3}} + \frac {16}{x^{4}} - 40 \, {\rm Ei}\relax (x) - 310 \, e^{x} + 40 \, \Gamma \left (-1, -x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.16, size = 81, normalized size = 2.70 \begin {gather*} {\mathrm {e}}^x\,\left (80\,\ln \relax (2)-270\right )+100\,{\mathrm {e}}^{2\,x}\,{\ln \relax (2)}^2+25\,x^2\,{\mathrm {e}}^{2\,x}-x\,\left (40\,{\mathrm {e}}^x+100\,{\mathrm {e}}^{2\,x}\,\ln \relax (2)\right )+\frac {216\,x+x^2\,\left (80\,{\mathrm {e}}^x\,\ln \relax (2)+761\right )+x^3\,\left ({\mathrm {e}}^x\,\left (540\,\ln \relax (2)-40\right )+216\right )+16}{x^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.25, size = 88, normalized size = 2.93 \begin {gather*} \frac {\left (25 x^{4} - 100 x^{3} \log {\relax (2 )} + 100 x^{2} \log {\relax (2 )}^{2}\right ) e^{2 x} + \left (- 40 x^{3} - 270 x^{2} + 80 x^{2} \log {\relax (2 )} - 40 x + 540 x \log {\relax (2 )} + 80 \log {\relax (2 )}\right ) e^{x}}{x^{2}} - \frac {- 216 x^{3} - 761 x^{2} - 216 x - 16}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________