Optimal. Leaf size=21 \[ \frac {3}{2} x \log ^2\left (25 \left (e^x+x\right ) (x+\log (x))^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 6.31, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (12 x+18 x^2+e^x \left (12+12 x+6 x^2\right )+\left (6 x+6 e^x x\right ) \log (x)\right ) \log \left (25 e^x x^2+25 x^3+\left (50 e^x x+50 x^2\right ) \log (x)+\left (25 e^x+25 x\right ) \log ^2(x)\right )+\left (3 e^x x+3 x^2+\left (3 e^x+3 x\right ) \log (x)\right ) \log ^2\left (25 e^x x^2+25 x^3+\left (50 e^x x+50 x^2\right ) \log (x)+\left (25 e^x+25 x\right ) \log ^2(x)\right )}{2 e^x x+2 x^2+\left (2 e^x+2 x\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right ) \left (4 e^x+4 x+4 e^x x+6 x^2+2 e^x x^2+x \left (e^x+x\right ) \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )+\log (x) \left (2 \left (1+e^x\right ) x+\left (e^x+x\right ) \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )\right )\right )}{2 \left (e^x+x\right ) (x+\log (x))} \, dx\\ &=\frac {3}{2} \int \frac {\log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right ) \left (4 e^x+4 x+4 e^x x+6 x^2+2 e^x x^2+x \left (e^x+x\right ) \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )+\log (x) \left (2 \left (1+e^x\right ) x+\left (e^x+x\right ) \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )\right )\right )}{\left (e^x+x\right ) (x+\log (x))} \, dx\\ &=\frac {3}{2} \int \left (-\frac {2 (-1+x) x \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )}{e^x+x}+\frac {\log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right ) \left (4+4 x+2 x^2+2 x \log (x)+x \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )+\log (x) \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )\right )}{x+\log (x)}\right ) \, dx\\ &=\frac {3}{2} \int \frac {\log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right ) \left (4+4 x+2 x^2+2 x \log (x)+x \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )+\log (x) \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )\right )}{x+\log (x)} \, dx-3 \int \frac {(-1+x) x \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )}{e^x+x} \, dx\\ &=\frac {3}{2} \int \left (\frac {2 \left (2+2 x+x^2+x \log (x)\right ) \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )}{x+\log (x)}+\log ^2\left (25 \left (e^x+x\right ) (x+\log (x))^2\right )\right ) \, dx+3 \int \frac {\left (x (2+3 x)+e^x \left (2+2 x+x^2\right )+\left (1+e^x\right ) x \log (x)\right ) \left (-\int \frac {x}{e^x+x} \, dx+\int \frac {x^2}{e^x+x} \, dx\right )}{x \left (e^x+x\right ) (x+\log (x))} \, dx+\left (3 \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )\right ) \int \frac {x}{e^x+x} \, dx-\left (3 \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )\right ) \int \frac {x^2}{e^x+x} \, dx\\ &=\frac {3}{2} \int \log ^2\left (25 \left (e^x+x\right ) (x+\log (x))^2\right ) \, dx+3 \int \frac {\left (2+2 x+x^2+x \log (x)\right ) \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )}{x+\log (x)} \, dx+3 \int \left (\frac {(-1+x) \left (\int \frac {x}{e^x+x} \, dx-\int \frac {x^2}{e^x+x} \, dx\right )}{e^x+x}-\frac {\left (2+2 x+x^2+x \log (x)\right ) \left (\int \frac {x}{e^x+x} \, dx-\int \frac {x^2}{e^x+x} \, dx\right )}{x (x+\log (x))}\right ) \, dx+\left (3 \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )\right ) \int \frac {x}{e^x+x} \, dx-\left (3 \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )\right ) \int \frac {x^2}{e^x+x} \, dx\\ &=\frac {3}{2} \int \log ^2\left (25 \left (e^x+x\right ) (x+\log (x))^2\right ) \, dx+3 \int \left (\frac {2 \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )}{x+\log (x)}+\frac {2 x \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )}{x+\log (x)}+\frac {x^2 \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )}{x+\log (x)}+\frac {x \log (x) \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )}{x+\log (x)}\right ) \, dx+3 \int \frac {(-1+x) \left (\int \frac {x}{e^x+x} \, dx-\int \frac {x^2}{e^x+x} \, dx\right )}{e^x+x} \, dx-3 \int \frac {\left (2+2 x+x^2+x \log (x)\right ) \left (\int \frac {x}{e^x+x} \, dx-\int \frac {x^2}{e^x+x} \, dx\right )}{x (x+\log (x))} \, dx+\left (3 \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )\right ) \int \frac {x}{e^x+x} \, dx-\left (3 \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )\right ) \int \frac {x^2}{e^x+x} \, dx\\ &=\frac {3}{2} \int \log ^2\left (25 \left (e^x+x\right ) (x+\log (x))^2\right ) \, dx+3 \int \frac {x^2 \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )}{x+\log (x)} \, dx+3 \int \frac {x \log (x) \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )}{x+\log (x)} \, dx+3 \int \left (-\frac {\int \frac {x}{e^x+x} \, dx-\int \frac {x^2}{e^x+x} \, dx}{e^x+x}+\frac {x \left (\int \frac {x}{e^x+x} \, dx-\int \frac {x^2}{e^x+x} \, dx\right )}{e^x+x}\right ) \, dx-3 \int \left (\frac {\left (2+2 x+x^2+x \log (x)\right ) \int \frac {x}{e^x+x} \, dx}{x (x+\log (x))}-\frac {\left (2+2 x+x^2+x \log (x)\right ) \int \frac {x^2}{e^x+x} \, dx}{x (x+\log (x))}\right ) \, dx+6 \int \frac {\log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )}{x+\log (x)} \, dx+6 \int \frac {x \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )}{x+\log (x)} \, dx+\left (3 \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )\right ) \int \frac {x}{e^x+x} \, dx-\left (3 \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )\right ) \int \frac {x^2}{e^x+x} \, dx\\ &=\frac {3}{2} \int \log ^2\left (25 \left (e^x+x\right ) (x+\log (x))^2\right ) \, dx+3 \int \frac {x^2 \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )}{x+\log (x)} \, dx+3 \int \frac {x \log (x) \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )}{x+\log (x)} \, dx-3 \int \frac {\left (2+2 x+x^2+x \log (x)\right ) \int \frac {x}{e^x+x} \, dx}{x (x+\log (x))} \, dx-3 \int \frac {\int \frac {x}{e^x+x} \, dx-\int \frac {x^2}{e^x+x} \, dx}{e^x+x} \, dx+3 \int \frac {x \left (\int \frac {x}{e^x+x} \, dx-\int \frac {x^2}{e^x+x} \, dx\right )}{e^x+x} \, dx+3 \int \frac {\left (2+2 x+x^2+x \log (x)\right ) \int \frac {x^2}{e^x+x} \, dx}{x (x+\log (x))} \, dx+6 \int \frac {\log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )}{x+\log (x)} \, dx+6 \int \frac {x \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )}{x+\log (x)} \, dx+\left (3 \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )\right ) \int \frac {x}{e^x+x} \, dx-\left (3 \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )\right ) \int \frac {x^2}{e^x+x} \, dx\\ &=\frac {3}{2} \int \log ^2\left (25 \left (e^x+x\right ) (x+\log (x))^2\right ) \, dx+3 \int \frac {x^2 \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )}{x+\log (x)} \, dx+3 \int \frac {x \log (x) \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )}{x+\log (x)} \, dx-3 \int \left (\frac {2 \int \frac {x}{e^x+x} \, dx}{x+\log (x)}+\frac {2 \int \frac {x}{e^x+x} \, dx}{x (x+\log (x))}+\frac {x \int \frac {x}{e^x+x} \, dx}{x+\log (x)}+\frac {\log (x) \int \frac {x}{e^x+x} \, dx}{x+\log (x)}\right ) \, dx-3 \int \left (\frac {\int \frac {x}{e^x+x} \, dx}{e^x+x}-\frac {\int \frac {x^2}{e^x+x} \, dx}{e^x+x}\right ) \, dx+3 \int \left (\frac {x \int \frac {x}{e^x+x} \, dx}{e^x+x}-\frac {x \int \frac {x^2}{e^x+x} \, dx}{e^x+x}\right ) \, dx+3 \int \left (\frac {2 \int \frac {x^2}{e^x+x} \, dx}{x+\log (x)}+\frac {2 \int \frac {x^2}{e^x+x} \, dx}{x (x+\log (x))}+\frac {x \int \frac {x^2}{e^x+x} \, dx}{x+\log (x)}+\frac {\log (x) \int \frac {x^2}{e^x+x} \, dx}{x+\log (x)}\right ) \, dx+6 \int \frac {\log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )}{x+\log (x)} \, dx+6 \int \frac {x \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )}{x+\log (x)} \, dx+\left (3 \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )\right ) \int \frac {x}{e^x+x} \, dx-\left (3 \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )\right ) \int \frac {x^2}{e^x+x} \, dx\\ &=\frac {3}{2} \int \log ^2\left (25 \left (e^x+x\right ) (x+\log (x))^2\right ) \, dx+3 \int \frac {x^2 \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )}{x+\log (x)} \, dx+3 \int \frac {x \log (x) \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )}{x+\log (x)} \, dx-3 \int \frac {\int \frac {x}{e^x+x} \, dx}{e^x+x} \, dx+3 \int \frac {x \int \frac {x}{e^x+x} \, dx}{e^x+x} \, dx-3 \int \frac {x \int \frac {x}{e^x+x} \, dx}{x+\log (x)} \, dx-3 \int \frac {\log (x) \int \frac {x}{e^x+x} \, dx}{x+\log (x)} \, dx+3 \int \frac {\int \frac {x^2}{e^x+x} \, dx}{e^x+x} \, dx-3 \int \frac {x \int \frac {x^2}{e^x+x} \, dx}{e^x+x} \, dx+3 \int \frac {x \int \frac {x^2}{e^x+x} \, dx}{x+\log (x)} \, dx+3 \int \frac {\log (x) \int \frac {x^2}{e^x+x} \, dx}{x+\log (x)} \, dx+6 \int \frac {\log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )}{x+\log (x)} \, dx+6 \int \frac {x \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )}{x+\log (x)} \, dx-6 \int \frac {\int \frac {x}{e^x+x} \, dx}{x+\log (x)} \, dx-6 \int \frac {\int \frac {x}{e^x+x} \, dx}{x (x+\log (x))} \, dx+6 \int \frac {\int \frac {x^2}{e^x+x} \, dx}{x+\log (x)} \, dx+6 \int \frac {\int \frac {x^2}{e^x+x} \, dx}{x (x+\log (x))} \, dx+\left (3 \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )\right ) \int \frac {x}{e^x+x} \, dx-\left (3 \log \left (25 \left (e^x+x\right ) (x+\log (x))^2\right )\right ) \int \frac {x^2}{e^x+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.24, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (12 x+18 x^2+e^x \left (12+12 x+6 x^2\right )+\left (6 x+6 e^x x\right ) \log (x)\right ) \log \left (25 e^x x^2+25 x^3+\left (50 e^x x+50 x^2\right ) \log (x)+\left (25 e^x+25 x\right ) \log ^2(x)\right )+\left (3 e^x x+3 x^2+\left (3 e^x+3 x\right ) \log (x)\right ) \log ^2\left (25 e^x x^2+25 x^3+\left (50 e^x x+50 x^2\right ) \log (x)+\left (25 e^x+25 x\right ) \log ^2(x)\right )}{2 e^x x+2 x^2+\left (2 e^x+2 x\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.49, size = 41, normalized size = 1.95 \begin {gather*} \frac {3}{2} \, x \log \left (25 \, x^{3} + 25 \, x^{2} e^{x} + 25 \, {\left (x + e^{x}\right )} \log \relax (x)^{2} + 50 \, {\left (x^{2} + x e^{x}\right )} \log \relax (x)\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 2.85, size = 48, normalized size = 2.29 \begin {gather*} \frac {3}{2} \, x \log \left (25 \, x^{3} + 25 \, x^{2} e^{x} + 50 \, x^{2} \log \relax (x) + 50 \, x e^{x} \log \relax (x) + 25 \, x \log \relax (x)^{2} + 25 \, e^{x} \log \relax (x)^{2}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.40, size = 1627, normalized size = 77.48
method | result | size |
risch | \(\text {Expression too large to display}\) | \(1627\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.61, size = 57, normalized size = 2.71 \begin {gather*} 6 \, x \log \relax (5)^{2} + \frac {3}{2} \, x \log \left (x + e^{x}\right )^{2} + 12 \, x \log \relax (5) \log \left (x + \log \relax (x)\right ) + 6 \, x \log \left (x + \log \relax (x)\right )^{2} + 6 \, {\left (x \log \relax (5) + x \log \left (x + \log \relax (x)\right )\right )} \log \left (x + e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.87, size = 46, normalized size = 2.19 \begin {gather*} \frac {3\,x\,{\ln \left (25\,x^2\,{\mathrm {e}}^x+{\ln \relax (x)}^2\,\left (25\,x+25\,{\mathrm {e}}^x\right )+\ln \relax (x)\,\left (50\,x\,{\mathrm {e}}^x+50\,x^2\right )+25\,x^3\right )}^2}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.79, size = 49, normalized size = 2.33 \begin {gather*} \frac {3 x \log {\left (25 x^{3} + 25 x^{2} e^{x} + \left (25 x + 25 e^{x}\right ) \log {\relax (x )}^{2} + \left (50 x^{2} + 50 x e^{x}\right ) \log {\relax (x )} \right )}^{2}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________