Optimal. Leaf size=25 \[ 2 \left (2-\frac {x}{e^8 \left (e^{e^{4/x}}-x\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.51, antiderivative size = 21, normalized size of antiderivative = 0.84, number of steps used = 3, number of rules used = 3, integrand size = 64, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.047, Rules used = {6688, 12, 6687} \begin {gather*} -\frac {2 x}{e^8 \left (e^{e^{4/x}}-x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6687
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{-8+e^{4/x}} \left (-4 e^{4/x}-x\right )}{\left (e^{e^{4/x}}-x\right )^2 x} \, dx\\ &=2 \int \frac {e^{-8+e^{4/x}} \left (-4 e^{4/x}-x\right )}{\left (e^{e^{4/x}}-x\right )^2 x} \, dx\\ &=-\frac {2 x}{e^8 \left (e^{e^{4/x}}-x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 21, normalized size = 0.84 \begin {gather*} -\frac {2 x}{e^8 \left (e^{e^{4/x}}-x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 21, normalized size = 0.84 \begin {gather*} \frac {2 \, x}{x e^{8} - e^{\left (e^{\frac {4}{x}} + 8\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 21, normalized size = 0.84 \begin {gather*} \frac {2 \, x}{x e^{8} - e^{\left (e^{\frac {4}{x}} + 8\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 19, normalized size = 0.76
method | result | size |
risch | \(\frac {2 x \,{\mathrm e}^{-8}}{x -{\mathrm e}^{{\mathrm e}^{\frac {4}{x}}}}\) | \(19\) |
norman | \(\frac {2 \,{\mathrm e}^{-8} {\mathrm e}^{{\mathrm e}^{\frac {4}{x}}}}{x -{\mathrm e}^{{\mathrm e}^{\frac {4}{x}}}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.70, size = 21, normalized size = 0.84 \begin {gather*} \frac {2 \, x}{x e^{8} - e^{\left (e^{\frac {4}{x}} + 8\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.26, size = 28, normalized size = 1.12 \begin {gather*} \frac {2\,x^3}{x^3\,{\mathrm {e}}^8-x^2\,{\mathrm {e}}^{{\mathrm {e}}^{4/x}}\,{\mathrm {e}}^8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 19, normalized size = 0.76 \begin {gather*} - \frac {2 x}{- x e^{8} + e^{8} e^{e^{\frac {4}{x}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________