Optimal. Leaf size=22 \[ \left (-1+\frac {1}{x}\right ) \log \left (e^x \left (-3-\frac {14 x}{3}\right ) x+\log (x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 10.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3-3 x+e^x \left (-9 x-28 x^2+23 x^3+14 x^4\right )+\left (e^x \left (9 x+14 x^2\right )-3 \log (x)\right ) \log \left (\frac {1}{3} \left (e^x \left (-9 x-14 x^2\right )+3 \log (x)\right )\right )}{e^x \left (-9 x^3-14 x^4\right )+3 x^2 \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {3 (-1+x) \left (-9-14 x+9 \log (x)+37 x \log (x)+14 x^2 \log (x)\right )}{x^2 (9+14 x) \left (9 e^x x+14 e^x x^2-3 \log (x)\right )}+\frac {9+28 x-23 x^2-14 x^3-9 \log \left (-\frac {1}{3} e^x x (9+14 x)+\log (x)\right )-14 x \log \left (-\frac {1}{3} e^x x (9+14 x)+\log (x)\right )}{x^2 (9+14 x)}\right ) \, dx\\ &=-\left (3 \int \frac {(-1+x) \left (-9-14 x+9 \log (x)+37 x \log (x)+14 x^2 \log (x)\right )}{x^2 (9+14 x) \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx\right )+\int \frac {9+28 x-23 x^2-14 x^3-9 \log \left (-\frac {1}{3} e^x x (9+14 x)+\log (x)\right )-14 x \log \left (-\frac {1}{3} e^x x (9+14 x)+\log (x)\right )}{x^2 (9+14 x)} \, dx\\ &=-\left (3 \int \left (-\frac {-9-14 x+9 \log (x)+37 x \log (x)+14 x^2 \log (x)}{9 x^2 \left (9 e^x x+14 e^x x^2-3 \log (x)\right )}+\frac {23 \left (-9-14 x+9 \log (x)+37 x \log (x)+14 x^2 \log (x)\right )}{81 x \left (9 e^x x+14 e^x x^2-3 \log (x)\right )}-\frac {322 \left (-9-14 x+9 \log (x)+37 x \log (x)+14 x^2 \log (x)\right )}{81 (9+14 x) \left (9 e^x x+14 e^x x^2-3 \log (x)\right )}\right ) \, dx\right )+\int \frac {9+28 x-23 x^2-14 x^3-(9+14 x) \log \left (-\frac {1}{3} e^x x (9+14 x)+\log (x)\right )}{x^2 (9+14 x)} \, dx\\ &=\frac {1}{3} \int \frac {-9-14 x+9 \log (x)+37 x \log (x)+14 x^2 \log (x)}{x^2 \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx-\frac {23}{27} \int \frac {-9-14 x+9 \log (x)+37 x \log (x)+14 x^2 \log (x)}{x \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx+\frac {322}{27} \int \frac {-9-14 x+9 \log (x)+37 x \log (x)+14 x^2 \log (x)}{(9+14 x) \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx+\int \left (\frac {9+28 x-23 x^2-14 x^3}{x^2 (9+14 x)}-\frac {\log \left (-\frac {1}{3} e^x x (9+14 x)+\log (x)\right )}{x^2}\right ) \, dx\\ &=\frac {1}{3} \int \left (-\frac {9}{x^2 \left (9 e^x x+14 e^x x^2-3 \log (x)\right )}-\frac {14}{x \left (9 e^x x+14 e^x x^2-3 \log (x)\right )}+\frac {14 \log (x)}{9 e^x x+14 e^x x^2-3 \log (x)}+\frac {9 \log (x)}{x^2 \left (9 e^x x+14 e^x x^2-3 \log (x)\right )}+\frac {37 \log (x)}{x \left (9 e^x x+14 e^x x^2-3 \log (x)\right )}\right ) \, dx-\frac {23}{27} \int \left (-\frac {14}{9 e^x x+14 e^x x^2-3 \log (x)}-\frac {9}{x \left (9 e^x x+14 e^x x^2-3 \log (x)\right )}+\frac {37 \log (x)}{9 e^x x+14 e^x x^2-3 \log (x)}+\frac {9 \log (x)}{x \left (9 e^x x+14 e^x x^2-3 \log (x)\right )}+\frac {14 x \log (x)}{9 e^x x+14 e^x x^2-3 \log (x)}\right ) \, dx+\frac {322}{27} \int \left (-\frac {9}{(9+14 x) \left (9 e^x x+14 e^x x^2-3 \log (x)\right )}-\frac {14 x}{(9+14 x) \left (9 e^x x+14 e^x x^2-3 \log (x)\right )}+\frac {9 \log (x)}{(9+14 x) \left (9 e^x x+14 e^x x^2-3 \log (x)\right )}+\frac {37 x \log (x)}{(9+14 x) \left (9 e^x x+14 e^x x^2-3 \log (x)\right )}+\frac {14 x^2 \log (x)}{(9+14 x) \left (9 e^x x+14 e^x x^2-3 \log (x)\right )}\right ) \, dx+\int \frac {9+28 x-23 x^2-14 x^3}{x^2 (9+14 x)} \, dx-\int \frac {\log \left (-\frac {1}{3} e^x x (9+14 x)+\log (x)\right )}{x^2} \, dx\\ &=-\left (3 \int \frac {1}{x^2 \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx\right )+3 \int \frac {\log (x)}{x^2 \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx-\frac {14}{3} \int \frac {1}{x \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx+\frac {14}{3} \int \frac {\log (x)}{9 e^x x+14 e^x x^2-3 \log (x)} \, dx+\frac {23}{3} \int \frac {1}{x \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx-\frac {23}{3} \int \frac {\log (x)}{x \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx+\frac {322}{27} \int \frac {1}{9 e^x x+14 e^x x^2-3 \log (x)} \, dx-\frac {322}{27} \int \frac {x \log (x)}{9 e^x x+14 e^x x^2-3 \log (x)} \, dx+\frac {37}{3} \int \frac {\log (x)}{x \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx-\frac {851}{27} \int \frac {\log (x)}{9 e^x x+14 e^x x^2-3 \log (x)} \, dx-\frac {322}{3} \int \frac {1}{(9+14 x) \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx+\frac {322}{3} \int \frac {\log (x)}{(9+14 x) \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx-\frac {4508}{27} \int \frac {x}{(9+14 x) \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx+\frac {4508}{27} \int \frac {x^2 \log (x)}{(9+14 x) \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx+\frac {11914}{27} \int \frac {x \log (x)}{(9+14 x) \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx+\int \left (-1+\frac {1}{x^2}+\frac {14}{9 x}-\frac {322}{9 (9+14 x)}\right ) \, dx-\int \frac {\log \left (-\frac {1}{3} e^x x (9+14 x)+\log (x)\right )}{x^2} \, dx\\ &=-\frac {1}{x}-x+\frac {14 \log (x)}{9}-\frac {23}{9} \log (9+14 x)-3 \int \frac {1}{x^2 \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx+3 \int \frac {\log (x)}{x^2 \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx-\frac {14}{3} \int \frac {1}{x \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx+\frac {14}{3} \int \frac {\log (x)}{9 e^x x+14 e^x x^2-3 \log (x)} \, dx+\frac {23}{3} \int \frac {1}{x \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx-\frac {23}{3} \int \frac {\log (x)}{x \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx+\frac {322}{27} \int \frac {1}{9 e^x x+14 e^x x^2-3 \log (x)} \, dx-\frac {322}{27} \int \frac {x \log (x)}{9 e^x x+14 e^x x^2-3 \log (x)} \, dx+\frac {37}{3} \int \frac {\log (x)}{x \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx-\frac {851}{27} \int \frac {\log (x)}{9 e^x x+14 e^x x^2-3 \log (x)} \, dx-\frac {322}{3} \int \frac {1}{(9+14 x) \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx+\frac {322}{3} \int \frac {\log (x)}{(9+14 x) \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx-\frac {4508}{27} \int \left (\frac {1}{14 \left (9 e^x x+14 e^x x^2-3 \log (x)\right )}-\frac {9}{14 (9+14 x) \left (9 e^x x+14 e^x x^2-3 \log (x)\right )}\right ) \, dx+\frac {4508}{27} \int \left (-\frac {9 \log (x)}{196 \left (9 e^x x+14 e^x x^2-3 \log (x)\right )}+\frac {x \log (x)}{14 \left (9 e^x x+14 e^x x^2-3 \log (x)\right )}+\frac {81 \log (x)}{196 (9+14 x) \left (9 e^x x+14 e^x x^2-3 \log (x)\right )}\right ) \, dx+\frac {11914}{27} \int \left (\frac {\log (x)}{14 \left (9 e^x x+14 e^x x^2-3 \log (x)\right )}-\frac {9 \log (x)}{14 (9+14 x) \left (9 e^x x+14 e^x x^2-3 \log (x)\right )}\right ) \, dx-\int \frac {\log \left (-\frac {1}{3} e^x x (9+14 x)+\log (x)\right )}{x^2} \, dx\\ &=-\frac {1}{x}-x+\frac {14 \log (x)}{9}-\frac {23}{9} \log (9+14 x)-3 \int \frac {1}{x^2 \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx+3 \int \frac {\log (x)}{x^2 \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx-\frac {14}{3} \int \frac {1}{x \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx+\frac {14}{3} \int \frac {\log (x)}{9 e^x x+14 e^x x^2-3 \log (x)} \, dx+\frac {23}{3} \int \frac {1}{x \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx-\frac {23}{3} \int \frac {\log (x)}{9 e^x x+14 e^x x^2-3 \log (x)} \, dx-\frac {23}{3} \int \frac {\log (x)}{x \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx+\frac {37}{3} \int \frac {\log (x)}{x \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx+69 \int \frac {\log (x)}{(9+14 x) \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx+\frac {322}{3} \int \frac {\log (x)}{(9+14 x) \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx-\frac {851}{3} \int \frac {\log (x)}{(9+14 x) \left (9 e^x x+14 e^x x^2-3 \log (x)\right )} \, dx-\int \frac {\log \left (-\frac {1}{3} e^x x (9+14 x)+\log (x)\right )}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.23, size = 44, normalized size = 2.00 \begin {gather*} -\log \left (9 e^x x+14 e^x x^2-3 \log (x)\right )+\frac {\log \left (-\frac {1}{3} e^x x (9+14 x)+\log (x)\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 25, normalized size = 1.14 \begin {gather*} -\frac {{\left (x - 1\right )} \log \left (-\frac {1}{3} \, {\left (14 \, x^{2} + 9 \, x\right )} e^{x} + \log \relax (x)\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.04, size = 41, normalized size = 1.86
method | result | size |
risch | \(\frac {\ln \left (\ln \relax (x )+\frac {\left (-14 x^{2}-9 x \right ) {\mathrm e}^{x}}{3}\right )}{x}-\ln \left (\ln \relax (x )-\frac {14 \,{\mathrm e}^{x} x^{2}}{3}-3 \,{\mathrm e}^{x} x \right )\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.53, size = 74, normalized size = 3.36 \begin {gather*} -\frac {\log \relax (3) - \log \left (-{\left (14 \, x^{2} + 9 \, x\right )} e^{x} + 3 \, \log \relax (x)\right )}{x} - \log \left (14 \, x + 9\right ) - \log \relax (x) - \log \left (\frac {{\left (14 \, x^{2} + 9 \, x\right )} e^{x} - 3 \, \log \relax (x)}{14 \, x^{2} + 9 \, x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int \frac {3\,x+\ln \left (\ln \relax (x)-\frac {{\mathrm {e}}^x\,\left (14\,x^2+9\,x\right )}{3}\right )\,\left (3\,\ln \relax (x)-{\mathrm {e}}^x\,\left (14\,x^2+9\,x\right )\right )+{\mathrm {e}}^x\,\left (-14\,x^4-23\,x^3+28\,x^2+9\,x\right )-3}{{\mathrm {e}}^x\,\left (14\,x^4+9\,x^3\right )-3\,x^2\,\ln \relax (x)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.40, size = 49, normalized size = 2.23 \begin {gather*} - \log {\left (14 x^{2} + 9 x \right )} - \log {\left (e^{x} - \frac {3 \log {\relax (x )}}{14 x^{2} + 9 x} \right )} + \frac {\log {\left (\left (- \frac {14 x^{2}}{3} - 3 x\right ) e^{x} + \log {\relax (x )} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________