Optimal. Leaf size=34 \[ \frac {4+\frac {1}{2} \left (3-e^x-x\right ) x \left (e^x+4 \log (x)\right )}{-3+x \log (4)} \]
________________________________________________________________________________________
Rubi [C] time = 3.82, antiderivative size = 767, normalized size of antiderivative = 22.56, number of steps used = 55, number of rules used = 18, integrand size = 117, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {27, 12, 6742, 43, 77, 2199, 2177, 2178, 2194, 2314, 31, 2351, 2316, 2315, 2295, 6688, 2176, 2554} \begin {gather*} \frac {9 e^{\frac {3}{\log (4)}} (3+\log (16)) \text {Ei}\left (-\frac {3-x \log (4)}{\log (4)}\right )}{2 \log ^4(4)}-\frac {27 e^{\frac {3}{\log (4)}} \text {Ei}\left (-\frac {3-x \log (4)}{\log (4)}\right )}{2 \log ^4(4)}-\frac {e^{\frac {6}{\log (4)}} \log (4096) \text {Ei}\left (-\frac {2 (3-x \log (4))}{\log (4)}\right )}{2 \log ^3(4)}-\frac {3 e^{\frac {3}{\log (4)}} (3+\log (256)) \text {Ei}\left (-\frac {3-x \log (4)}{\log (4)}\right )}{2 \log ^3(4)}+\frac {3 e^{\frac {3}{\log (4)}} (3+\log (16)) \text {Ei}\left (-\frac {3-x \log (4)}{\log (4)}\right )}{\log ^3(4)}-\frac {27 e^{\frac {3}{\log (4)}} \text {Ei}\left (-\frac {3-x \log (4)}{\log (4)}\right )}{2 \log ^3(4)}-\frac {2^{\frac {6}{\log ^2(4)}-1} (3+\log (256)) \text {Ei}\left (\frac {x \log ^2(4)-\log (64)}{\log ^2(4)}\right )}{\log ^2(4)}+\frac {3 e^{\frac {6}{\log (4)}} \text {Ei}\left (-\frac {2 (3-x \log (4))}{\log (4)}\right )}{\log ^2(4)}+\frac {3 e^{\frac {3}{\log (4)}} \text {Ei}\left (-\frac {3-x \log (4)}{\log (4)}\right )}{2 \log ^2(4)}+\frac {2 e^{\frac {3}{\log (4)}} \text {Ei}\left (-\frac {3-x \log (4)}{\log (4)}\right )}{\log (4)}+\frac {12 \text {Li}_2\left (1-\frac {1}{3} x \log (4)\right )}{\log ^2(4)}-\frac {12 \text {Li}_2\left (1-\frac {x \log ^2(4)}{\log (64)}\right )}{\log ^2(4)}-\frac {27 e^x}{2 \log ^3(4) (3-x \log (4))}+\frac {9 e^x (3+\log (16))}{2 \log ^3(4) (3-x \log (4))}-\frac {6 (2-\log (4)) \log (3-x \log (4))}{\log ^2(4)}+\frac {6 \log (3-x \log (4))}{\log ^2(4)}-\frac {12 \log \left (\frac {3}{\log (4)}\right ) \log (x \log (4)-3)}{\log ^2(4)}+\frac {6 \log \left (x \log ^2(4)-\log (64)\right )}{\log ^2(4)}+\frac {18}{\log ^2(4) (3-x \log (4))}+\frac {12 \log \left (\frac {\log (64)}{\log ^2(4)}\right ) \log \left (x \log ^2(4)-\log (64)\right )}{\log ^2(4)}-\frac {3 e^x (3+\log (256))}{2 \log ^2(4) (3-x \log (4))}+\frac {e^x (3+\log (16))}{2 \log ^2(4)}-\frac {e^{2 x} \log (16)}{4 \log ^2(4)}-\frac {2 (3-\log (4)) (3-\log (16))}{\log ^2(4) (3-x \log (4))}-\frac {3 e^x}{\log ^2(4)}+\frac {6 x \log (x)}{\log (4) (3-x \log (4))}-\frac {6 x \log (x)}{3-x \log (4)}-\frac {2 x \log (x)}{\log (4)}-\frac {e^x x}{2 \log (4)}+\frac {6 e^x \log (x)}{\log (4) (3-x \log (4))}-\frac {2 e^x \log (x)}{\log (4)}-\frac {6 \log (3-x \log (4))}{\log (4)}+\frac {3 e^x}{2 \log (4) (3-x \log (4))}+\frac {3 e^{2 x}}{2 \log (4) (3-x \log (4))}-\frac {18}{\log (4) (3-x \log (4))}+\frac {e^x}{2 \log (4)} \end {gather*}
Warning: Unable to verify antiderivative.
[In]
[Out]
Rule 12
Rule 27
Rule 31
Rule 43
Rule 77
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 2295
Rule 2314
Rule 2315
Rule 2316
Rule 2351
Rule 2554
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-36+12 x+\left (-8+12 x-4 x^2\right ) \log (4)+e^{2 x} \left (3+6 x-2 x^2 \log (4)\right )+e^x \left (3-3 x+3 x^2+\left (-4 x+2 x^2-x^3\right ) \log (4)\right )+\left (-36+24 x-4 x^2 \log (4)+e^x \left (12+12 x-4 x^2 \log (4)\right )\right ) \log (x)}{2 (-3+x \log (4))^2} \, dx\\ &=\frac {1}{2} \int \frac {-36+12 x+\left (-8+12 x-4 x^2\right ) \log (4)+e^{2 x} \left (3+6 x-2 x^2 \log (4)\right )+e^x \left (3-3 x+3 x^2+\left (-4 x+2 x^2-x^3\right ) \log (4)\right )+\left (-36+24 x-4 x^2 \log (4)+e^x \left (12+12 x-4 x^2 \log (4)\right )\right ) \log (x)}{(-3+x \log (4))^2} \, dx\\ &=\frac {1}{2} \int \left (-\frac {36}{(-3+x \log (4))^2}+\frac {12 x}{(-3+x \log (4))^2}-\frac {4 (-2+x) (-1+x) \log (4)}{(-3+x \log (4))^2}-\frac {e^{2 x} \left (-3-6 x+x^2 \log (16)\right )}{(-3+x \log (4))^2}-\frac {36 \log (x)}{(-3+x \log (4))^2}+\frac {24 x \log (x)}{(-3+x \log (4))^2}-\frac {4 x^2 \log (4) \log (x)}{(-3+x \log (4))^2}+\frac {e^x \left (3-x^3 \log (4)+3 x^2 \left (1+\frac {\log (16)}{3}\right )-3 x \left (1+\log \left (4\ 2^{2/3}\right )\right )+12 \log (x)+12 x \log (x)-4 x^2 \log (4) \log (x)\right )}{(3-x \log (4))^2}\right ) \, dx\\ &=-\frac {18}{\log (4) (3-x \log (4))}-\frac {1}{2} \int \frac {e^{2 x} \left (-3-6 x+x^2 \log (16)\right )}{(-3+x \log (4))^2} \, dx+\frac {1}{2} \int \frac {e^x \left (3-x^3 \log (4)+3 x^2 \left (1+\frac {\log (16)}{3}\right )-3 x \left (1+\log \left (4\ 2^{2/3}\right )\right )+12 \log (x)+12 x \log (x)-4 x^2 \log (4) \log (x)\right )}{(3-x \log (4))^2} \, dx+6 \int \frac {x}{(-3+x \log (4))^2} \, dx+12 \int \frac {x \log (x)}{(-3+x \log (4))^2} \, dx-18 \int \frac {\log (x)}{(-3+x \log (4))^2} \, dx-(2 \log (4)) \int \frac {(-2+x) (-1+x)}{(-3+x \log (4))^2} \, dx-(2 \log (4)) \int \frac {x^2 \log (x)}{(-3+x \log (4))^2} \, dx\\ &=-\frac {18}{\log (4) (3-x \log (4))}-\frac {6 x \log (x)}{3-x \log (4)}-\frac {1}{2} \int \left (-\frac {3 e^{2 x}}{(-3+x \log (4))^2}+\frac {e^{2 x} \log (16)}{\log ^2(4)}+\frac {e^{2 x} \log (4096)}{\log ^2(4) (-3+x \log (4))}\right ) \, dx+\frac {1}{2} \int \frac {e^x \left (3-x^3 \log (4)+x^2 (3+\log (16))-x (3+\log (256))-4 \left (-3-3 x+x^2 \log (4)\right ) \log (x)\right )}{(3-x \log (4))^2} \, dx-6 \int \frac {1}{-3+x \log (4)} \, dx+6 \int \left (\frac {3}{\log (4) (-3+x \log (4))^2}+\frac {1}{x \log ^2(4)-\log (64)}\right ) \, dx+12 \int \left (\frac {3 \log (x)}{\log (4) (-3+x \log (4))^2}+\frac {\log (x)}{x \log ^2(4)-\log (64)}\right ) \, dx-(2 \log (4)) \int \left (\frac {1}{\log ^2(4)}+\frac {(3-2 \log (4)) (3-\log (4))}{\log ^2(4) (3-x \log (4))^2}-\frac {3 (-2+\log (4))}{\log ^2(4) (-3+x \log (4))}\right ) \, dx-(2 \log (4)) \int \left (\frac {\log (x)}{\log ^2(4)}+\frac {9 \log (x)}{\log ^2(4) (-3+x \log (4))^2}+\frac {6 \log (x)}{\log ^2(4) (-3+x \log (4))}\right ) \, dx\\ &=-\frac {2 x}{\log (4)}+\frac {18}{\log ^2(4) (3-x \log (4))}-\frac {18}{\log (4) (3-x \log (4))}-\frac {2 (3-\log (4)) (3-\log (16))}{\log ^2(4) (3-x \log (4))}-\frac {6 x \log (x)}{3-x \log (4)}-\frac {6 (2-\log (4)) \log (3-x \log (4))}{\log ^2(4)}-\frac {6 \log (3-x \log (4))}{\log (4)}+\frac {6 \log \left (x \log ^2(4)-\log (64)\right )}{\log ^2(4)}+\frac {1}{2} \int \left (\frac {3 e^x}{(-3+x \log (4))^2}-\frac {e^x x^3 \log (4)}{(-3+x \log (4))^2}+\frac {e^x x^2 (3+\log (16))}{(-3+x \log (4))^2}-\frac {e^x x (3+\log (256))}{(-3+x \log (4))^2}-\frac {4 e^x \left (-3-3 x+x^2 \log (4)\right ) \log (x)}{(-3+x \log (4))^2}\right ) \, dx+\frac {3}{2} \int \frac {e^{2 x}}{(-3+x \log (4))^2} \, dx+12 \int \frac {\log (x)}{x \log ^2(4)-\log (64)} \, dx-\frac {2 \int \log (x) \, dx}{\log (4)}-\frac {12 \int \frac {\log (x)}{-3+x \log (4)} \, dx}{\log (4)}-\frac {18 \int \frac {\log (x)}{(-3+x \log (4))^2} \, dx}{\log (4)}+\frac {36 \int \frac {\log (x)}{(-3+x \log (4))^2} \, dx}{\log (4)}-\frac {\log (16) \int e^{2 x} \, dx}{2 \log ^2(4)}-\frac {\log (4096) \int \frac {e^{2 x}}{-3+x \log (4)} \, dx}{2 \log ^2(4)}\\ &=\frac {18}{\log ^2(4) (3-x \log (4))}-\frac {18}{\log (4) (3-x \log (4))}+\frac {3 e^{2 x}}{2 \log (4) (3-x \log (4))}-\frac {2 (3-\log (4)) (3-\log (16))}{\log ^2(4) (3-x \log (4))}-\frac {e^{2 x} \log (16)}{4 \log ^2(4)}-\frac {e^{\frac {6}{\log (4)}} \text {Ei}\left (-\frac {2 (3-x \log (4))}{\log (4)}\right ) \log (4096)}{2 \log ^3(4)}-\frac {2 x \log (x)}{\log (4)}-\frac {6 x \log (x)}{3-x \log (4)}+\frac {6 x \log (x)}{\log (4) (3-x \log (4))}-\frac {6 (2-\log (4)) \log (3-x \log (4))}{\log ^2(4)}-\frac {6 \log (3-x \log (4))}{\log (4)}-\frac {12 \log \left (\frac {3}{\log (4)}\right ) \log (-3+x \log (4))}{\log ^2(4)}+\frac {6 \log \left (x \log ^2(4)-\log (64)\right )}{\log ^2(4)}+\frac {12 \log \left (x \log ^2(4)-\log (64)\right ) \log \left (\frac {\log (64)}{\log ^2(4)}\right )}{\log ^2(4)}+\frac {3}{2} \int \frac {e^x}{(-3+x \log (4))^2} \, dx-2 \int \frac {e^x \left (-3-3 x+x^2 \log (4)\right ) \log (x)}{(-3+x \log (4))^2} \, dx+12 \int \frac {\log \left (\frac {x \log ^2(4)}{\log (64)}\right )}{x \log ^2(4)-\log (64)} \, dx+\frac {3 \int \frac {e^{2 x}}{-3+x \log (4)} \, dx}{\log (4)}-\frac {6 \int \frac {1}{-3+x \log (4)} \, dx}{\log (4)}+\frac {12 \int \frac {1}{-3+x \log (4)} \, dx}{\log (4)}-\frac {12 \int \frac {\log \left (\frac {1}{3} x \log (4)\right )}{-3+x \log (4)} \, dx}{\log (4)}-\frac {1}{2} \log (4) \int \frac {e^x x^3}{(-3+x \log (4))^2} \, dx+\frac {1}{2} (3+\log (16)) \int \frac {e^x x^2}{(-3+x \log (4))^2} \, dx+\frac {1}{2} (-3-\log (256)) \int \frac {e^x x}{(-3+x \log (4))^2} \, dx\\ &=\frac {3 e^{\frac {6}{\log (4)}} \text {Ei}\left (-\frac {2 (3-x \log (4))}{\log (4)}\right )}{\log ^2(4)}+\frac {18}{\log ^2(4) (3-x \log (4))}-\frac {18}{\log (4) (3-x \log (4))}+\frac {3 e^x}{2 \log (4) (3-x \log (4))}+\frac {3 e^{2 x}}{2 \log (4) (3-x \log (4))}-\frac {2 (3-\log (4)) (3-\log (16))}{\log ^2(4) (3-x \log (4))}-\frac {e^{2 x} \log (16)}{4 \log ^2(4)}-\frac {e^{\frac {6}{\log (4)}} \text {Ei}\left (-\frac {2 (3-x \log (4))}{\log (4)}\right ) \log (4096)}{2 \log ^3(4)}-\frac {2 e^x \log (x)}{\log (4)}-\frac {2 x \log (x)}{\log (4)}-\frac {6 x \log (x)}{3-x \log (4)}+\frac {6 e^x \log (x)}{\log (4) (3-x \log (4))}+\frac {6 x \log (x)}{\log (4) (3-x \log (4))}+\frac {6 \log (3-x \log (4))}{\log ^2(4)}-\frac {6 (2-\log (4)) \log (3-x \log (4))}{\log ^2(4)}-\frac {6 \log (3-x \log (4))}{\log (4)}-\frac {12 \log \left (\frac {3}{\log (4)}\right ) \log (-3+x \log (4))}{\log ^2(4)}+\frac {6 \log \left (x \log ^2(4)-\log (64)\right )}{\log ^2(4)}+\frac {12 \log \left (x \log ^2(4)-\log (64)\right ) \log \left (\frac {\log (64)}{\log ^2(4)}\right )}{\log ^2(4)}+\frac {12 \text {Li}_2\left (1-\frac {1}{3} x \log (4)\right )}{\log ^2(4)}-\frac {12 \text {Li}_2\left (1-\frac {x \log ^2(4)}{\log (64)}\right )}{\log ^2(4)}+2 \int \frac {e^x}{-3+x \log (4)} \, dx+\frac {3 \int \frac {e^x}{-3+x \log (4)} \, dx}{2 \log (4)}-\frac {1}{2} \log (4) \int \left (\frac {6 e^x}{\log ^3(4)}+\frac {e^x x}{\log ^2(4)}+\frac {27 e^x}{\log ^3(4) (-3+x \log (4))^2}+\frac {27 e^x}{\log ^3(4) (-3+x \log (4))}\right ) \, dx+\frac {1}{2} (3+\log (16)) \int \left (\frac {e^x}{\log ^2(4)}+\frac {9 e^x}{\log ^2(4) (-3+x \log (4))^2}+\frac {6 e^x}{\log ^2(4) (-3+x \log (4))}\right ) \, dx+\frac {1}{2} (-3-\log (256)) \int \left (\frac {3 e^x}{\log (4) (-3+x \log (4))^2}+\frac {e^x}{x \log ^2(4)-\log (64)}\right ) \, dx\\ &=\frac {3 e^{\frac {6}{\log (4)}} \text {Ei}\left (-\frac {2 (3-x \log (4))}{\log (4)}\right )}{\log ^2(4)}+\frac {3 e^{\frac {3}{\log (4)}} \text {Ei}\left (-\frac {3-x \log (4)}{\log (4)}\right )}{2 \log ^2(4)}+\frac {2 e^{\frac {3}{\log (4)}} \text {Ei}\left (-\frac {3-x \log (4)}{\log (4)}\right )}{\log (4)}+\frac {18}{\log ^2(4) (3-x \log (4))}-\frac {18}{\log (4) (3-x \log (4))}+\frac {3 e^x}{2 \log (4) (3-x \log (4))}+\frac {3 e^{2 x}}{2 \log (4) (3-x \log (4))}-\frac {2 (3-\log (4)) (3-\log (16))}{\log ^2(4) (3-x \log (4))}-\frac {e^{2 x} \log (16)}{4 \log ^2(4)}-\frac {e^{\frac {6}{\log (4)}} \text {Ei}\left (-\frac {2 (3-x \log (4))}{\log (4)}\right ) \log (4096)}{2 \log ^3(4)}-\frac {2 e^x \log (x)}{\log (4)}-\frac {2 x \log (x)}{\log (4)}-\frac {6 x \log (x)}{3-x \log (4)}+\frac {6 e^x \log (x)}{\log (4) (3-x \log (4))}+\frac {6 x \log (x)}{\log (4) (3-x \log (4))}+\frac {6 \log (3-x \log (4))}{\log ^2(4)}-\frac {6 (2-\log (4)) \log (3-x \log (4))}{\log ^2(4)}-\frac {6 \log (3-x \log (4))}{\log (4)}-\frac {12 \log \left (\frac {3}{\log (4)}\right ) \log (-3+x \log (4))}{\log ^2(4)}+\frac {6 \log \left (x \log ^2(4)-\log (64)\right )}{\log ^2(4)}+\frac {12 \log \left (x \log ^2(4)-\log (64)\right ) \log \left (\frac {\log (64)}{\log ^2(4)}\right )}{\log ^2(4)}+\frac {12 \text {Li}_2\left (1-\frac {1}{3} x \log (4)\right )}{\log ^2(4)}-\frac {12 \text {Li}_2\left (1-\frac {x \log ^2(4)}{\log (64)}\right )}{\log ^2(4)}-\frac {3 \int e^x \, dx}{\log ^2(4)}-\frac {27 \int \frac {e^x}{(-3+x \log (4))^2} \, dx}{2 \log ^2(4)}-\frac {27 \int \frac {e^x}{-3+x \log (4)} \, dx}{2 \log ^2(4)}-\frac {\int e^x x \, dx}{2 \log (4)}+\frac {(3+\log (16)) \int e^x \, dx}{2 \log ^2(4)}+\frac {(3 (3+\log (16))) \int \frac {e^x}{-3+x \log (4)} \, dx}{\log ^2(4)}+\frac {(9 (3+\log (16))) \int \frac {e^x}{(-3+x \log (4))^2} \, dx}{2 \log ^2(4)}+\frac {1}{2} (-3-\log (256)) \int \frac {e^x}{x \log ^2(4)-\log (64)} \, dx+\frac {(3 (-3-\log (256))) \int \frac {e^x}{(-3+x \log (4))^2} \, dx}{2 \log (4)}\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.42, size = 146, normalized size = 4.29 \begin {gather*} \frac {6 e^x \log ^3(4)+e^{2 x} x \log ^4(4)+e^x x^2 \log ^4(4)-4 \log ^3(4) \log (16)-e^x x \log ^3(4) \log (64)-e^x \log (4) \log (16) \log (64)-e^{\frac {3}{\log (4)}} \text {Ei}\left (x-\frac {3}{\log (4)}\right ) (-3+x \log (4)) \left (4 \log ^3(4)-\log ^2(4) \log (256)-\log (64) \log (256)+\log (16) \log (4096)\right )+4 x \left (-3+e^x+x\right ) \log ^4(4) \log (x)}{2 \log ^4(4) (3-x \log (4))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 44, normalized size = 1.29 \begin {gather*} -\frac {x e^{\left (2 \, x\right )} + {\left (x^{2} - 3 \, x\right )} e^{x} + 4 \, {\left (x^{2} + x e^{x} - 3 \, x\right )} \log \relax (x) - 8}{2 \, {\left (2 \, x \log \relax (2) - 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 49, normalized size = 1.44 \begin {gather*} -\frac {x^{2} e^{x} + 4 \, x^{2} \log \relax (x) + 4 \, x e^{x} \log \relax (x) + x e^{\left (2 \, x\right )} - 3 \, x e^{x} - 12 \, x \log \relax (x) - 8}{2 \, {\left (2 \, x \log \relax (2) - 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.31, size = 115, normalized size = 3.38
method | result | size |
default | \(\frac {3 \,{\mathrm e}^{x} x -{\mathrm e}^{x} x^{2}-4 x \,{\mathrm e}^{x} \ln \relax (x )}{4 x \ln \relax (2)-6}+\frac {4}{2 x \ln \relax (2)-3}-\frac {\ln \relax (x ) x}{\ln \relax (2)}-\frac {3 \ln \relax (x ) x}{\ln \relax (2) \left (2 x \ln \relax (2)-3\right )}+\frac {6 \ln \relax (x ) x}{2 x \ln \relax (2)-3}-\frac {3 \,{\mathrm e}^{2 x}}{8 \ln \relax (2)^{2} \left (x -\frac {3}{2 \ln \relax (2)}\right )}-\frac {{\mathrm e}^{2 x}}{4 \ln \relax (2)}\) | \(115\) |
risch | \(-\frac {\left (4 x^{2} \ln \relax (2)^{2}+4 x \ln \relax (2)^{2} {\mathrm e}^{x}-6 x \ln \relax (2)-18 \ln \relax (2)+9\right ) \ln \relax (x )}{2 \ln \relax (2)^{2} \left (2 x \ln \relax (2)-3\right )}+\frac {-{\mathrm e}^{x} \ln \relax (2)^{2} x^{2}-x \ln \relax (2)^{2} {\mathrm e}^{2 x}+12 \ln \relax (2)^{2} \ln \left (-x \right ) x +3 x \ln \relax (2)^{2} {\mathrm e}^{x}-6 \ln \relax (2) \ln \left (-x \right ) x +8 \ln \relax (2)^{2}-18 \ln \relax (2) \ln \left (-x \right )+9 \ln \left (-x \right )}{2 \ln \relax (2)^{2} \left (2 x \ln \relax (2)-3\right )}\) | \(135\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{2} \, {\left (\frac {9}{2 \, x \log \relax (2)^{4} - 3 \, \log \relax (2)^{3}} - \frac {2 \, x}{\log \relax (2)^{2}} - \frac {6 \, \log \left (2 \, x \log \relax (2) - 3\right )}{\log \relax (2)^{3}}\right )} \log \relax (2) - 3 \, {\left (\frac {3}{2 \, x \log \relax (2)^{3} - 3 \, \log \relax (2)^{2}} - \frac {\log \left (2 \, x \log \relax (2) - 3\right )}{\log \relax (2)^{2}}\right )} \log \relax (2) - \frac {4 \, x e^{x} \log \relax (2)^{2} \log \relax (x) - 4 \, x^{2} \log \relax (2)^{2} + x e^{\left (2 \, x\right )} \log \relax (2)^{2} + 6 \, x \log \relax (2) + {\left (4 \, x^{2} \log \relax (2)^{2} - 6 \, x \log \relax (2) - 18 \, \log \relax (2) + 9\right )} \log \relax (x)}{2 \, {\left (2 \, x \log \relax (2)^{3} - 3 \, \log \relax (2)^{2}\right )}} - \frac {3 \, e^{\left (\frac {3}{2 \, \log \relax (2)}\right )} E_{2}\left (-\frac {2 \, x \log \relax (2) - 3}{2 \, \log \relax (2)}\right )}{4 \, {\left (2 \, x \log \relax (2) - 3\right )} \log \relax (2)} + \frac {4 \, \log \relax (2)}{2 \, x \log \relax (2)^{2} - 3 \, \log \relax (2)} - \frac {3 \, {\left (2 \, \log \relax (2) - 1\right )} \log \left (2 \, x \log \relax (2) - 3\right )}{2 \, \log \relax (2)^{2}} + \frac {3 \, {\left (2 \, \log \relax (2) - 1\right )} \log \relax (x)}{2 \, \log \relax (2)^{2}} - \frac {9}{2 \, {\left (2 \, x \log \relax (2)^{3} - 3 \, \log \relax (2)^{2}\right )}} + \frac {9}{2 \, x \log \relax (2)^{2} - 3 \, \log \relax (2)} + \frac {3 \, \log \left (2 \, x \log \relax (2) - 3\right )}{2 \, \log \relax (2)^{2}} - \frac {1}{2} \, \int \frac {{\left (2 \, x^{3} \log \relax (2) - x^{2} {\left (4 \, \log \relax (2) + 3\right )} + 3 \, x + 12\right )} e^{x}}{4 \, x^{2} \log \relax (2)^{2} - 12 \, x \log \relax (2) + 9}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {12\,x+\ln \relax (x)\,\left (24\,x+{\mathrm {e}}^x\,\left (-8\,\ln \relax (2)\,x^2+12\,x+12\right )-8\,x^2\,\ln \relax (2)-36\right )-2\,\ln \relax (2)\,\left (4\,x^2-12\,x+8\right )+{\mathrm {e}}^{2\,x}\,\left (-4\,\ln \relax (2)\,x^2+6\,x+3\right )-{\mathrm {e}}^x\,\left (3\,x+2\,\ln \relax (2)\,\left (x^3-2\,x^2+4\,x\right )-3\,x^2-3\right )-36}{8\,{\ln \relax (2)}^2\,x^2-24\,\ln \relax (2)\,x+18} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.98, size = 153, normalized size = 4.50 \begin {gather*} \frac {\left (- 4 x^{2} \log {\relax (2 )} + 6 x\right ) e^{2 x} + \left (- 4 x^{3} \log {\relax (2 )} - 16 x^{2} \log {\relax (2 )} \log {\relax (x )} + 6 x^{2} + 12 x^{2} \log {\relax (2 )} + 24 x \log {\relax (x )} - 18 x\right ) e^{x}}{16 x^{2} \log {\relax (2 )}^{2} - 48 x \log {\relax (2 )} + 36} + \frac {3 \left (-1 + 2 \log {\relax (2 )}\right ) \log {\relax (x )}}{2 \log {\relax (2 )}^{2}} + \frac {\left (- 4 x^{2} \log {\relax (2 )}^{2} + 6 x \log {\relax (2 )} - 9 + 18 \log {\relax (2 )}\right ) \log {\relax (x )}}{4 x \log {\relax (2 )}^{3} - 6 \log {\relax (2 )}^{2}} + \frac {4}{2 x \log {\relax (2 )} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________