Optimal. Leaf size=22 \[ \log ^2\left (\frac {x}{5-\frac {2+\log (-4+x)}{9 x}}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.54, antiderivative size = 19, normalized size of antiderivative = 0.86, number of steps used = 1, number of rules used = 4, integrand size = 66, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.061, Rules used = {6741, 6742, 6684, 6686} \begin {gather*} \log ^2\left (-\frac {9 x^2}{-45 x+\log (x-4)+2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6686
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log ^2\left (-\frac {9 x^2}{2-45 x+\log (-4+x)}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 19, normalized size = 0.86 \begin {gather*} \log ^2\left (-\frac {9 x^2}{2-45 x+\log (-4+x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 21, normalized size = 0.95 \begin {gather*} \log \left (\frac {9 \, x^{2}}{45 \, x - \log \left (x - 4\right ) - 2}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 72, normalized size = 3.27 \begin {gather*} -2 \, {\left (2 \, \log \relax (x) - \log \left (-45 \, x + \log \left (x - 4\right ) + 2\right )\right )} \log \left (45 \, x - \log \left (x - 4\right ) - 2\right ) + 8 \, \log \relax (3) \log \relax (x) + 4 \, \log \relax (x)^{2} - 4 \, \log \relax (3) \log \left (-45 \, x + \log \left (x - 4\right ) + 2\right ) - \log \left (-45 \, x + \log \left (x - 4\right ) + 2\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.28, size = 536, normalized size = 24.36
method | result | size |
risch | \(-i \ln \left (\ln \left (x -4\right )-45 x +2\right ) \pi \mathrm {csgn}\left (\frac {i x^{2}}{\frac {\ln \left (x -4\right )}{45}-x +\frac {2}{45}}\right )^{3}-i \ln \left (\ln \left (x -4\right )-45 x +2\right ) \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\frac {\ln \left (x -4\right )}{45}-x +\frac {2}{45}}\right )^{2}+4 i \pi \ln \relax (x ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+i \ln \left (\ln \left (x -4\right )-45 x +2\right ) \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i}{\frac {\ln \left (x -4\right )}{45}-x +\frac {2}{45}}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\frac {\ln \left (x -4\right )}{45}-x +\frac {2}{45}}\right )^{2}+i \ln \left (\ln \left (x -4\right )-45 x +2\right ) \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i}{\frac {\ln \left (x -4\right )}{45}-x +\frac {2}{45}}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\frac {\ln \left (x -4\right )}{45}-x +\frac {2}{45}}\right )+\ln \left (-\frac {\ln \left (x -4\right )}{45}+x -\frac {2}{45}\right )^{2}-2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \ln \left (\ln \left (x -4\right )-45 x +2\right ) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+i \ln \left (\ln \left (x -4\right )-45 x +2\right ) \pi \,\mathrm {csgn}\left (\frac {i}{\frac {\ln \left (x -4\right )}{45}-x +\frac {2}{45}}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\frac {\ln \left (x -4\right )}{45}-x +\frac {2}{45}}\right )^{2}+4 \ln \relax (x )^{2}+2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\frac {\ln \left (x -4\right )}{45}-x +\frac {2}{45}}\right )^{2}-2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i}{\frac {\ln \left (x -4\right )}{45}-x +\frac {2}{45}}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{\frac {\ln \left (x -4\right )}{45}-x +\frac {2}{45}}\right )-4 \ln \relax (x ) \ln \left (-\frac {\ln \left (x -4\right )}{45}+x -\frac {2}{45}\right )+2 \ln \left (\ln \left (x -4\right )-45 x +2\right ) \ln \relax (5)+2 i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i x^{2}}{\frac {\ln \left (x -4\right )}{45}-x +\frac {2}{45}}\right )^{3}+i \ln \left (\ln \left (x -4\right )-45 x +2\right ) \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-4 \ln \relax (5) \ln \relax (x )\) | \(536\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.42, size = 73, normalized size = 3.32 \begin {gather*} -4 \, \log \relax (x)^{2} + 4 \, \log \relax (x) \log \left (-45 \, x + \log \left (x - 4\right ) + 2\right ) - \log \left (-45 \, x + \log \left (x - 4\right ) + 2\right )^{2} + 2 \, {\left (2 \, \log \relax (x) - \log \left (-45 \, x + \log \left (x - 4\right ) + 2\right )\right )} \log \left (\frac {9 \, x^{2}}{45 \, x - \log \left (x - 4\right ) - 2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.21, size = 19, normalized size = 0.86 \begin {gather*} {\ln \left (-\frac {9\,x^2}{\ln \left (x-4\right )-45\,x+2}\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 19, normalized size = 0.86 \begin {gather*} \log {\left (- \frac {9 x^{2}}{- 45 x + \log {\left (x - 4 \right )} + 2} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________