Optimal. Leaf size=33 \[ -e+\left (-2+\frac {x}{3}\right ) \left (-\left (\left (3 e^4+3 e^{-e^x}\right ) x\right )+\log (x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.77, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-e^x} \left (18 x-6 x^2+e^x \left (-18 x^2+3 x^3\right )+e^{e^x} \left (-6+x+e^4 \left (18 x-6 x^2\right )+x \log (x)\right )\right )}{3 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {e^{-e^x} \left (18 x-6 x^2+e^x \left (-18 x^2+3 x^3\right )+e^{e^x} \left (-6+x+e^4 \left (18 x-6 x^2\right )+x \log (x)\right )\right )}{x} \, dx\\ &=\frac {1}{3} \int \left (-6 e^4 (-3+x)-6 e^{-e^x} (-3+x)+\frac {-6+x}{x}+3 e^{-e^x+x} (-6+x) x+\log (x)\right ) \, dx\\ &=-e^4 (3-x)^2+\frac {1}{3} \int \frac {-6+x}{x} \, dx+\frac {1}{3} \int \log (x) \, dx-2 \int e^{-e^x} (-3+x) \, dx+\int e^{-e^x+x} (-6+x) x \, dx\\ &=-e^4 (3-x)^2-\frac {x}{3}+\frac {1}{3} x \log (x)+\frac {1}{3} \int \left (1-\frac {6}{x}\right ) \, dx-2 \int \left (-3 e^{-e^x}+e^{-e^x} x\right ) \, dx+\int \left (-6 e^{-e^x+x} x+e^{-e^x+x} x^2\right ) \, dx\\ &=-e^4 (3-x)^2-2 \log (x)+\frac {1}{3} x \log (x)-2 \int e^{-e^x} x \, dx+6 \int e^{-e^x} \, dx-6 \int e^{-e^x+x} x \, dx+\int e^{-e^x+x} x^2 \, dx\\ &=-e^4 (3-x)^2-2 \log (x)+\frac {1}{3} x \log (x)-2 \int e^{-e^x} x \, dx-6 \int e^{-e^x+x} x \, dx+6 \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,e^x\right )+\int e^{-e^x+x} x^2 \, dx\\ &=-e^4 (3-x)^2+6 \text {Ei}\left (-e^x\right )-2 \log (x)+\frac {1}{3} x \log (x)-2 \int e^{-e^x} x \, dx-6 \int e^{-e^x+x} x \, dx+\int e^{-e^x+x} x^2 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 36, normalized size = 1.09 \begin {gather*} -\frac {1}{3} e^{-e^x} (-6+x) \left (3 \left (1+e^{4+e^x}\right ) x-e^{e^x} \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 39, normalized size = 1.18 \begin {gather*} -\frac {1}{3} \, {\left (3 \, x^{2} + {\left (3 \, {\left (x^{2} - 6 \, x\right )} e^{4} - {\left (x - 6\right )} \log \relax (x)\right )} e^{\left (e^{x}\right )} - 18 \, x\right )} e^{\left (-e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 58, normalized size = 1.76 \begin {gather*} -\frac {1}{3} \, {\left (3 \, x^{2} e^{\left (x - e^{x}\right )} + 3 \, x^{2} e^{\left (x + 4\right )} - x e^{x} \log \relax (x) - 18 \, x e^{\left (x - e^{x}\right )} - 18 \, x e^{\left (x + 4\right )} + 6 \, e^{x} \log \relax (x)\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 39, normalized size = 1.18
method | result | size |
risch | \(\frac {x \ln \relax (x )}{3}-x^{2} {\mathrm e}^{4}+6 x \,{\mathrm e}^{4}-2 \ln \relax (x )+\frac {\left (-3 x^{2}+18 x \right ) {\mathrm e}^{-{\mathrm e}^{x}}}{3}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 36, normalized size = 1.09 \begin {gather*} -x^{2} e^{4} + 6 \, x e^{4} - {\left (x^{2} - 6 \, x\right )} e^{\left (-e^{x}\right )} + \frac {1}{3} \, x \log \relax (x) - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{-{\mathrm {e}}^x}\,\left (6\,x-\frac {{\mathrm {e}}^x\,\left (18\,x^2-3\,x^3\right )}{3}+\frac {{\mathrm {e}}^{{\mathrm {e}}^x}\,\left (x+{\mathrm {e}}^4\,\left (18\,x-6\,x^2\right )+x\,\ln \relax (x)-6\right )}{3}-2\,x^2\right )}{x} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 36, normalized size = 1.09 \begin {gather*} - x^{2} e^{4} + \frac {x \log {\relax (x )}}{3} + 6 x e^{4} + \left (- x^{2} + 6 x\right ) e^{- e^{x}} - 2 \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________