Optimal. Leaf size=26 \[ \sqrt {2} \sqrt [4]{\frac {1}{\log \left (2 \left (-x+e^{-2 x} x\right )\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 1.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\sqrt {2} \left (1-e^{2 x}-2 x\right ) \left (\frac {1}{\log \left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )}\right )^{5/4}}{-4 x+4 e^{2 x} x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\sqrt {2} \int \frac {\left (1-e^{2 x}-2 x\right ) \left (\frac {1}{\log \left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )}\right )^{5/4}}{-4 x+4 e^{2 x} x} \, dx\\ &=\left (\sqrt {2} \sqrt [4]{\frac {1}{\log \left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )}} \sqrt [4]{\log \left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )}\right ) \int \frac {1-e^{2 x}-2 x}{\left (-4 x+4 e^{2 x} x\right ) \log ^{\frac {5}{4}}\left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )} \, dx\\ &=\left (\sqrt {2} \sqrt [4]{\frac {1}{\log \left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )}} \sqrt [4]{\log \left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )}\right ) \int \frac {-1+e^{2 x}+2 x}{4 \left (1-e^{2 x}\right ) x \log ^{\frac {5}{4}}\left (-2 e^{-2 x} \left (-1+e^{2 x}\right ) x\right )} \, dx\\ &=\frac {\left (\sqrt [4]{\frac {1}{\log \left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )}} \sqrt [4]{\log \left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )}\right ) \int \frac {-1+e^{2 x}+2 x}{\left (1-e^{2 x}\right ) x \log ^{\frac {5}{4}}\left (-2 e^{-2 x} \left (-1+e^{2 x}\right ) x\right )} \, dx}{2 \sqrt {2}}\\ &=\frac {\left (\sqrt [4]{\frac {1}{\log \left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )}} \sqrt [4]{\log \left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )}\right ) \int \left (-\frac {1}{\left (-1+e^x\right ) \log ^{\frac {5}{4}}\left (-2 e^{-2 x} \left (-1+e^{2 x}\right ) x\right )}+\frac {1}{\left (1+e^x\right ) \log ^{\frac {5}{4}}\left (-2 e^{-2 x} \left (-1+e^{2 x}\right ) x\right )}-\frac {1}{x \log ^{\frac {5}{4}}\left (-2 e^{-2 x} \left (-1+e^{2 x}\right ) x\right )}\right ) \, dx}{2 \sqrt {2}}\\ &=-\frac {\left (\sqrt [4]{\frac {1}{\log \left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )}} \sqrt [4]{\log \left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )}\right ) \int \frac {1}{\left (-1+e^x\right ) \log ^{\frac {5}{4}}\left (-2 e^{-2 x} \left (-1+e^{2 x}\right ) x\right )} \, dx}{2 \sqrt {2}}+\frac {\left (\sqrt [4]{\frac {1}{\log \left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )}} \sqrt [4]{\log \left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )}\right ) \int \frac {1}{\left (1+e^x\right ) \log ^{\frac {5}{4}}\left (-2 e^{-2 x} \left (-1+e^{2 x}\right ) x\right )} \, dx}{2 \sqrt {2}}-\frac {\left (\sqrt [4]{\frac {1}{\log \left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )}} \sqrt [4]{\log \left (e^{-2 x} \left (2 x-2 e^{2 x} x\right )\right )}\right ) \int \frac {1}{x \log ^{\frac {5}{4}}\left (-2 e^{-2 x} \left (-1+e^{2 x}\right ) x\right )} \, dx}{2 \sqrt {2}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 23, normalized size = 0.88 \begin {gather*} \sqrt {2} \sqrt [4]{\frac {1}{\log \left (2 \left (-1+e^{-2 x}\right ) x\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.03, size = 23, normalized size = 0.88 \begin {gather*} \frac {\sqrt {2}}{\log \left (-2 \, {\left (x e^{\left (2 \, x\right )} - x\right )} e^{\left (-2 \, x\right )}\right )^{\frac {1}{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 23, normalized size = 0.88 \begin {gather*} \frac {\sqrt {2}}{\log \left (-2 \, {\left (x e^{\left (2 \, x\right )} - x\right )} e^{\left (-2 \, x\right )}\right )^{\frac {1}{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.03, size = 0, normalized size = 0.00 \[\int \frac {\left (-{\mathrm e}^{2 x}+1-2 x \right ) \sqrt {2}\, \left (\frac {1}{\ln \left (\left (-2 x \,{\mathrm e}^{2 x}+2 x \right ) {\mathrm e}^{-2 x}\right )}\right )^{\frac {1}{4}}}{\left (4 x \,{\mathrm e}^{2 x}-4 x \right ) \ln \left (\left (-2 x \,{\mathrm e}^{2 x}+2 x \right ) {\mathrm e}^{-2 x}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.60, size = 27, normalized size = 1.04 \begin {gather*} \frac {\sqrt {2}}{{\left (i \, \pi - 2 \, x + \log \relax (2) + \log \relax (x) + \log \left (e^{x} + 1\right ) + \log \left (e^{x} - 1\right )\right )}^{\frac {1}{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.40, size = 20, normalized size = 0.77 \begin {gather*} \sqrt {2}\,{\left (\frac {1}{\ln \left (2\,x\,{\mathrm {e}}^{-2\,x}-2\,x\right )}\right )}^{1/4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________