Optimal. Leaf size=31 \[ e^{1+\left (-1+3 e^x\right )^2 \left (-e^{e^3}+x\right )}-\frac {2}{3 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.93, antiderivative size = 43, normalized size of antiderivative = 1.39, number of steps used = 4, number of rules used = 3, integrand size = 112, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.027, Rules used = {12, 14, 6706} \begin {gather*} \exp \left (-e^{e^3} \left (1-3 e^x\right )^2-6 e^x x+9 e^{2 x} x+x+1\right )-\frac {2}{3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {2+\exp \left (1+e^{e^3} \left (-1+6 e^x-9 e^{2 x}\right )+x-6 e^x x+9 e^{2 x} x\right ) \left (3 x^2+e^{e^3} \left (18 e^x x^2-54 e^{2 x} x^2\right )+e^x \left (-18 x^2-18 x^3\right )+e^{2 x} \left (27 x^2+54 x^3\right )\right )}{x^2} \, dx\\ &=\frac {1}{3} \int \left (\frac {2}{x^2}+3 \exp \left (1-e^{e^3} \left (1-3 e^x\right )^2+x-6 e^x x+9 e^{2 x} x\right ) \left (1-3 e^x\right ) \left (1-3 e^x \left (1-2 e^{e^3}\right )-6 e^x x\right )\right ) \, dx\\ &=-\frac {2}{3 x}+\int \exp \left (1-e^{e^3} \left (1-3 e^x\right )^2+x-6 e^x x+9 e^{2 x} x\right ) \left (1-3 e^x\right ) \left (1-3 e^x \left (1-2 e^{e^3}\right )-6 e^x x\right ) \, dx\\ &=\exp \left (1-e^{e^3} \left (1-3 e^x\right )^2+x-6 e^x x+9 e^{2 x} x\right )-\frac {2}{3 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.23, size = 50, normalized size = 1.61 \begin {gather*} e^{1-e^{e^3}+6 e^x \left (e^{e^3}-x\right )-9 e^{2 x} \left (e^{e^3}-x\right )+x}-\frac {2}{3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 43, normalized size = 1.39 \begin {gather*} \frac {3 \, x e^{\left (9 \, x e^{\left (2 \, x\right )} - 6 \, x e^{x} - {\left (9 \, e^{\left (2 \, x\right )} - 6 \, e^{x} + 1\right )} e^{\left (e^{3}\right )} + x + 1\right )} - 2}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {3 \, {\left (x^{2} + 9 \, {\left (2 \, x^{3} + x^{2}\right )} e^{\left (2 \, x\right )} - 6 \, {\left (x^{3} + x^{2}\right )} e^{x} - 6 \, {\left (3 \, x^{2} e^{\left (2 \, x\right )} - x^{2} e^{x}\right )} e^{\left (e^{3}\right )}\right )} e^{\left (9 \, x e^{\left (2 \, x\right )} - 6 \, x e^{x} - {\left (9 \, e^{\left (2 \, x\right )} - 6 \, e^{x} + 1\right )} e^{\left (e^{3}\right )} + x + 1\right )} + 2}{3 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 41, normalized size = 1.32
method | result | size |
norman | \(\frac {-\frac {2}{3}+x \,{\mathrm e}^{\left (-9 \,{\mathrm e}^{2 x}+6 \,{\mathrm e}^{x}-1\right ) {\mathrm e}^{{\mathrm e}^{3}}+9 x \,{\mathrm e}^{2 x}-6 \,{\mathrm e}^{x} x +x +1}}{x}\) | \(41\) |
risch | \(-\frac {2}{3 x}+{\mathrm e}^{-9 \,{\mathrm e}^{2 x +{\mathrm e}^{3}}+6 \,{\mathrm e}^{{\mathrm e}^{3}+x}+9 x \,{\mathrm e}^{2 x}-6 \,{\mathrm e}^{x} x -{\mathrm e}^{{\mathrm e}^{3}}+x +1}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 43, normalized size = 1.39 \begin {gather*} -\frac {2}{3 \, x} + e^{\left (9 \, x e^{\left (2 \, x\right )} - 6 \, x e^{x} + x - 9 \, e^{\left (2 \, x + e^{3}\right )} + 6 \, e^{\left (x + e^{3}\right )} - e^{\left (e^{3}\right )} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.43, size = 49, normalized size = 1.58 \begin {gather*} {\mathrm {e}}^{-6\,x\,{\mathrm {e}}^x}\,\mathrm {e}\,{\mathrm {e}}^{6\,{\mathrm {e}}^{{\mathrm {e}}^3}\,{\mathrm {e}}^x}\,{\mathrm {e}}^{9\,x\,{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^{-{\mathrm {e}}^{{\mathrm {e}}^3}}\,{\mathrm {e}}^{-9\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{{\mathrm {e}}^3}}\,{\mathrm {e}}^x-\frac {2}{3\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 42, normalized size = 1.35 \begin {gather*} e^{9 x e^{2 x} - 6 x e^{x} + x + \left (- 9 e^{2 x} + 6 e^{x} - 1\right ) e^{e^{3}} + 1} - \frac {2}{3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________