Optimal. Leaf size=26 \[ \frac {\left (4+e^5\right ) x}{(-4-x)^2 \left (3+\log (x)+x \log \left (x^2\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.02, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {32-48 x-8 x^2+e^5 \left (8-12 x-2 x^2\right )+\left (16+e^5 (4-x)-4 x\right ) \log (x)+\left (-8 x^2-2 e^5 x^2\right ) \log \left (x^2\right )}{576+432 x+108 x^2+9 x^3+\left (384+288 x+72 x^2+6 x^3\right ) \log (x)+\left (64+48 x+12 x^2+x^3\right ) \log ^2(x)+\left (384 x+288 x^2+72 x^3+6 x^4+\left (128 x+96 x^2+24 x^3+2 x^4\right ) \log (x)\right ) \log \left (x^2\right )+\left (64 x^2+48 x^3+12 x^4+x^5\right ) \log ^2\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (4+e^5\right ) \left (-((-4+x) \log (x))-2 \left (-4+6 x+x^2+x^2 \log \left (x^2\right )\right )\right )}{(4+x)^3 \left (3+\log (x)+x \log \left (x^2\right )\right )^2} \, dx\\ &=\left (4+e^5\right ) \int \frac {-((-4+x) \log (x))-2 \left (-4+6 x+x^2+x^2 \log \left (x^2\right )\right )}{(4+x)^3 \left (3+\log (x)+x \log \left (x^2\right )\right )^2} \, dx\\ &=\left (4+e^5\right ) \int \left (\frac {2-2 x+\log (x)}{(4+x)^2 \left (3+\log (x)+x \log \left (x^2\right )\right )^2}-\frac {2 x}{(4+x)^3 \left (3+\log (x)+x \log \left (x^2\right )\right )}\right ) \, dx\\ &=\left (4+e^5\right ) \int \frac {2-2 x+\log (x)}{(4+x)^2 \left (3+\log (x)+x \log \left (x^2\right )\right )^2} \, dx-\left (2 \left (4+e^5\right )\right ) \int \frac {x}{(4+x)^3 \left (3+\log (x)+x \log \left (x^2\right )\right )} \, dx\\ &=\left (4+e^5\right ) \int \left (\frac {2}{(4+x)^2 \left (3+\log (x)+x \log \left (x^2\right )\right )^2}-\frac {2 x}{(4+x)^2 \left (3+\log (x)+x \log \left (x^2\right )\right )^2}+\frac {\log (x)}{(4+x)^2 \left (3+\log (x)+x \log \left (x^2\right )\right )^2}\right ) \, dx-\left (2 \left (4+e^5\right )\right ) \int \left (-\frac {4}{(4+x)^3 \left (3+\log (x)+x \log \left (x^2\right )\right )}+\frac {1}{(4+x)^2 \left (3+\log (x)+x \log \left (x^2\right )\right )}\right ) \, dx\\ &=\left (4+e^5\right ) \int \frac {\log (x)}{(4+x)^2 \left (3+\log (x)+x \log \left (x^2\right )\right )^2} \, dx+\left (2 \left (4+e^5\right )\right ) \int \frac {1}{(4+x)^2 \left (3+\log (x)+x \log \left (x^2\right )\right )^2} \, dx-\left (2 \left (4+e^5\right )\right ) \int \frac {x}{(4+x)^2 \left (3+\log (x)+x \log \left (x^2\right )\right )^2} \, dx-\left (2 \left (4+e^5\right )\right ) \int \frac {1}{(4+x)^2 \left (3+\log (x)+x \log \left (x^2\right )\right )} \, dx+\left (8 \left (4+e^5\right )\right ) \int \frac {1}{(4+x)^3 \left (3+\log (x)+x \log \left (x^2\right )\right )} \, dx\\ &=\left (4+e^5\right ) \int \frac {\log (x)}{(4+x)^2 \left (3+\log (x)+x \log \left (x^2\right )\right )^2} \, dx+\left (2 \left (4+e^5\right )\right ) \int \frac {1}{(4+x)^2 \left (3+\log (x)+x \log \left (x^2\right )\right )^2} \, dx-\left (2 \left (4+e^5\right )\right ) \int \frac {1}{(4+x)^2 \left (3+\log (x)+x \log \left (x^2\right )\right )} \, dx-\left (2 \left (4+e^5\right )\right ) \int \left (-\frac {4}{(4+x)^2 \left (3+\log (x)+x \log \left (x^2\right )\right )^2}+\frac {1}{(4+x) \left (3+\log (x)+x \log \left (x^2\right )\right )^2}\right ) \, dx+\left (8 \left (4+e^5\right )\right ) \int \frac {1}{(4+x)^3 \left (3+\log (x)+x \log \left (x^2\right )\right )} \, dx\\ &=\left (4+e^5\right ) \int \frac {\log (x)}{(4+x)^2 \left (3+\log (x)+x \log \left (x^2\right )\right )^2} \, dx+\left (2 \left (4+e^5\right )\right ) \int \frac {1}{(4+x)^2 \left (3+\log (x)+x \log \left (x^2\right )\right )^2} \, dx-\left (2 \left (4+e^5\right )\right ) \int \frac {1}{(4+x) \left (3+\log (x)+x \log \left (x^2\right )\right )^2} \, dx-\left (2 \left (4+e^5\right )\right ) \int \frac {1}{(4+x)^2 \left (3+\log (x)+x \log \left (x^2\right )\right )} \, dx+\left (8 \left (4+e^5\right )\right ) \int \frac {1}{(4+x)^2 \left (3+\log (x)+x \log \left (x^2\right )\right )^2} \, dx+\left (8 \left (4+e^5\right )\right ) \int \frac {1}{(4+x)^3 \left (3+\log (x)+x \log \left (x^2\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.56, size = 24, normalized size = 0.92 \begin {gather*} \frac {\left (4+e^5\right ) x}{(4+x)^2 \left (3+\log (x)+x \log \left (x^2\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 39, normalized size = 1.50 \begin {gather*} \frac {x e^{5} + 4 \, x}{3 \, x^{2} + {\left (2 \, x^{3} + 17 \, x^{2} + 40 \, x + 16\right )} \log \relax (x) + 24 \, x + 48} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 44, normalized size = 1.69 \begin {gather*} \frac {x e^{5} + 4 \, x}{2 \, x^{3} \log \relax (x) + 17 \, x^{2} \log \relax (x) + 3 \, x^{2} + 40 \, x \log \relax (x) + 24 \, x + 16 \, \log \relax (x) + 48} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.13, size = 82, normalized size = 3.15
method | result | size |
risch | \(\frac {2 i x \left (4+{\mathrm e}^{5}\right )}{\left (x^{2}+8 x +16\right ) \left (\pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi x \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i x \ln \relax (x )+2 i \ln \relax (x )+6 i\right )}\) | \(82\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 36, normalized size = 1.38 \begin {gather*} \frac {x {\left (e^{5} + 4\right )}}{3 \, x^{2} + {\left (2 \, x^{3} + 17 \, x^{2} + 40 \, x + 16\right )} \log \relax (x) + 24 \, x + 48} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.88, size = 147, normalized size = 5.65 \begin {gather*} \frac {\ln \left (x^2\right )\,\left (\left ({\mathrm {e}}^5+4\right )\,x^4+\left (4\,{\mathrm {e}}^5+16\right )\,x^3\right )-\ln \relax (x)\,\left (\left (2\,{\mathrm {e}}^5+8\right )\,x^4+\left (8\,{\mathrm {e}}^5+32\right )\,x^3\right )+x^2\,\left (4\,{\mathrm {e}}^5+16\right )+x^5\,\left (4\,{\mathrm {e}}^5+16\right )-x^3\,\left (7\,{\mathrm {e}}^5+28\right )+x^4\,\left (14\,{\mathrm {e}}^5+56\right )}{{\left (x+4\right )}^3\,\left (\ln \relax (x)\,\left (2\,x+1\right )+x\,\left (\ln \left (x^2\right )-2\,\ln \relax (x)\right )+3\right )\,\left (x+x^2\,\left (\ln \left (x^2\right )-2\,\ln \relax (x)\right )-2\,x^2+4\,x^3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 36, normalized size = 1.38 \begin {gather*} \frac {4 x + x e^{5}}{3 x^{2} + 24 x + \left (2 x^{3} + 17 x^{2} + 40 x + 16\right ) \log {\relax (x )} + 48} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________