Optimal. Leaf size=25 \[ x^2-e^x \left (-e+\frac {(-12+x) (-3+x) \log (x)}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.64, antiderivative size = 42, normalized size of antiderivative = 1.68, number of steps used = 17, number of rules used = 8, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {14, 6742, 2199, 2194, 2177, 2178, 2176, 2554} \begin {gather*} x^2-(1-e) e^x+e^x-e^x x \log (x)+15 e^x \log (x)-\frac {36 e^x \log (x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 2554
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2 x+\frac {e^x \left (-36+15 x-(1-e) x^2+36 \log (x)-36 x \log (x)+14 x^2 \log (x)-x^3 \log (x)\right )}{x^2}\right ) \, dx\\ &=x^2+\int \frac {e^x \left (-36+15 x-(1-e) x^2+36 \log (x)-36 x \log (x)+14 x^2 \log (x)-x^3 \log (x)\right )}{x^2} \, dx\\ &=x^2+\int \left (\frac {e^x \left (-36+15 x-(1-e) x^2\right )}{x^2}-\frac {e^x \left (-36+36 x-14 x^2+x^3\right ) \log (x)}{x^2}\right ) \, dx\\ &=x^2+\int \frac {e^x \left (-36+15 x-(1-e) x^2\right )}{x^2} \, dx-\int \frac {e^x \left (-36+36 x-14 x^2+x^3\right ) \log (x)}{x^2} \, dx\\ &=x^2+15 e^x \log (x)-\frac {36 e^x \log (x)}{x}-e^x x \log (x)+\int \left ((-1+e) e^x-\frac {36 e^x}{x^2}+\frac {15 e^x}{x}\right ) \, dx+\int \frac {e^x \left (36-15 x+x^2\right )}{x^2} \, dx\\ &=x^2+15 e^x \log (x)-\frac {36 e^x \log (x)}{x}-e^x x \log (x)+15 \int \frac {e^x}{x} \, dx-36 \int \frac {e^x}{x^2} \, dx+(-1+e) \int e^x \, dx+\int \left (e^x+\frac {36 e^x}{x^2}-\frac {15 e^x}{x}\right ) \, dx\\ &=-\left ((1-e) e^x\right )+\frac {36 e^x}{x}+x^2+15 \text {Ei}(x)+15 e^x \log (x)-\frac {36 e^x \log (x)}{x}-e^x x \log (x)-15 \int \frac {e^x}{x} \, dx+36 \int \frac {e^x}{x^2} \, dx-36 \int \frac {e^x}{x} \, dx+\int e^x \, dx\\ &=e^x-(1-e) e^x+x^2-36 \text {Ei}(x)+15 e^x \log (x)-\frac {36 e^x \log (x)}{x}-e^x x \log (x)+36 \int \frac {e^x}{x} \, dx\\ &=e^x-(1-e) e^x+x^2+15 e^x \log (x)-\frac {36 e^x \log (x)}{x}-e^x x \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 27, normalized size = 1.08 \begin {gather*} e^{1+x}+x^2-\frac {e^x \left (36-15 x+x^2\right ) \log (x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 28, normalized size = 1.12 \begin {gather*} \frac {x^{3} - {\left (x^{2} - 15 \, x + 36\right )} e^{x} \log \relax (x) + x e^{\left (x + 1\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 39, normalized size = 1.56 \begin {gather*} -\frac {x^{2} e^{x} \log \relax (x) - x^{3} - 15 \, x e^{x} \log \relax (x) - x e^{\left (x + 1\right )} + 36 \, e^{x} \log \relax (x)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 26, normalized size = 1.04
method | result | size |
risch | \(-\frac {\left (x^{2}-15 x +36\right ) {\mathrm e}^{x} \ln \relax (x )}{x}+{\mathrm e}^{x +1}+x^{2}\) | \(26\) |
norman | \(\frac {x^{3}+x \,{\mathrm e} \,{\mathrm e}^{x}-36 \,{\mathrm e}^{x} \ln \relax (x )+15 x \,{\mathrm e}^{x} \ln \relax (x )-x^{2} {\mathrm e}^{x} \ln \relax (x )}{x}\) | \(37\) |
default | \(\frac {x \,{\mathrm e} \,{\mathrm e}^{x}-36 \,{\mathrm e}^{x} \ln \relax (x )+15 x \,{\mathrm e}^{x} \ln \relax (x )-x^{2} {\mathrm e}^{x} \ln \relax (x )}{x}+x^{2}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x^{2} - \frac {{\left (x^{2} - x + 36\right )} e^{x} \log \relax (x)}{x} + 14 \, e^{x} \log \relax (x) + {\rm Ei}\relax (x) + e^{\left (x + 1\right )} - e^{x} - 36 \, \Gamma \left (-1, -x\right ) + \int \frac {{\left (x^{2} - x + 36\right )} e^{x}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.20, size = 30, normalized size = 1.20 \begin {gather*} {\mathrm {e}}^{x+1}+15\,{\mathrm {e}}^x\,\ln \relax (x)+x^2-x\,{\mathrm {e}}^x\,\ln \relax (x)-\frac {36\,{\mathrm {e}}^x\,\ln \relax (x)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 31, normalized size = 1.24 \begin {gather*} x^{2} + \frac {\left (- x^{2} \log {\relax (x )} + 15 x \log {\relax (x )} + e x - 36 \log {\relax (x )}\right ) e^{x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________