Optimal. Leaf size=19 \[ 5+\frac {e^{-100 e^{4-2 x}+x}}{x} \]
________________________________________________________________________________________
Rubi [F] time = 0.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{4-100 e^{4-2 x}-x} \left (e^{-4+2 x} (-1+x)+200 x\right )}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {e^{-100 e^{4-2 x}+x} (-1+x)}{x^2}+\frac {200 e^{4-100 e^{4-2 x}-x}}{x}\right ) \, dx\\ &=200 \int \frac {e^{4-100 e^{4-2 x}-x}}{x} \, dx+\int \frac {e^{-100 e^{4-2 x}+x} (-1+x)}{x^2} \, dx\\ &=200 \int \frac {e^{4-100 e^{4-2 x}-x}}{x} \, dx+\int \left (-\frac {e^{-100 e^{4-2 x}+x}}{x^2}+\frac {e^{-100 e^{4-2 x}+x}}{x}\right ) \, dx\\ &=200 \int \frac {e^{4-100 e^{4-2 x}-x}}{x} \, dx-\int \frac {e^{-100 e^{4-2 x}+x}}{x^2} \, dx+\int \frac {e^{-100 e^{4-2 x}+x}}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 17, normalized size = 0.89 \begin {gather*} \frac {e^{-100 e^{4-2 x}+x}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 30, normalized size = 1.58 \begin {gather*} \frac {e^{\left (-{\left ({\left (x - 4\right )} e^{\left (2 \, x - 4\right )} + 100\right )} e^{\left (-2 \, x + 4\right )} + 2 \, x - 4\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left ({\left (x - 1\right )} e^{\left (2 \, x - 4\right )} + 200 \, x\right )} e^{\left (-x - 100 \, e^{\left (-2 \, x + 4\right )} + 4\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 16, normalized size = 0.84
method | result | size |
risch | \(\frac {{\mathrm e}^{x -100 \,{\mathrm e}^{4-2 x}}}{x}\) | \(16\) |
norman | \(\frac {{\mathrm e}^{-4} {\mathrm e}^{4} {\mathrm e}^{x} {\mathrm e}^{-100 \,{\mathrm e}^{4-2 x}}}{x}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left ({\left (x - 1\right )} e^{\left (2 \, x - 4\right )} + 200 \, x\right )} e^{\left (-x - 100 \, e^{\left (-2 \, x + 4\right )} + 4\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.19, size = 15, normalized size = 0.79 \begin {gather*} \frac {{\mathrm {e}}^{-100\,{\mathrm {e}}^{-2\,x}\,{\mathrm {e}}^4}\,{\mathrm {e}}^x}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 15, normalized size = 0.79 \begin {gather*} \frac {e^{x} e^{- 100 e^{4} e^{- 2 x}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________