Optimal. Leaf size=24 \[ \log \left (2+\left (-4+e-\frac {4 e^{-x}}{5 \left (e^5+x\right )}\right )^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 7.95, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-32-32 e^5-32 x+e^x \left (e^{10} (-160+40 e)-160 x-160 x^2+e \left (40 x+40 x^2\right )+e^5 (-160-320 x+e (40+80 x))\right )}{16 e^5+16 x+e^x \left ((160-40 e) e^{10}+160 x^2-40 e x^2+e^5 (320 x-80 e x)\right )+e^{2 x} \left (e^{15} \left (450-200 e+25 e^2\right )+450 x^3-200 e x^3+25 e^2 x^3+e^{10} \left (1350 x-600 e x+75 e^2 x\right )+e^5 \left (1350 x^2-600 e x^2+75 e^2 x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 \left (1+e^5+x\right ) \left (-4-20 \left (1-\frac {e}{4}\right ) e^{5+x}-20 \left (1-\frac {e}{4}\right ) e^x x\right )}{\left (e^5+x\right ) \left (16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{2 (5+x)} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2\right )} \, dx\\ &=8 \int \frac {\left (1+e^5+x\right ) \left (-4-20 \left (1-\frac {e}{4}\right ) e^{5+x}-20 \left (1-\frac {e}{4}\right ) e^x x\right )}{\left (e^5+x\right ) \left (16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{2 (5+x)} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2\right )} \, dx\\ &=8 \int \left (\frac {-4-20 \left (1-\frac {e}{4}\right ) e^{5+x}-20 \left (1-\frac {e}{4}\right ) e^x x}{16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2}+\frac {-4-20 \left (1-\frac {e}{4}\right ) e^{5+x}-20 \left (1-\frac {e}{4}\right ) e^x x}{\left (e^5+x\right ) \left (16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2\right )}\right ) \, dx\\ &=8 \int \frac {-4-20 \left (1-\frac {e}{4}\right ) e^{5+x}-20 \left (1-\frac {e}{4}\right ) e^x x}{16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2} \, dx+8 \int \frac {-4-20 \left (1-\frac {e}{4}\right ) e^{5+x}-20 \left (1-\frac {e}{4}\right ) e^x x}{\left (e^5+x\right ) \left (16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2\right )} \, dx\\ &=8 \int \left (\frac {4}{-16-160 \left (1-\frac {e}{4}\right ) e^{5+x}-450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )-160 \left (1-\frac {e}{4}\right ) e^x x-900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x-450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2}+\frac {5 (-4+e) e^{5+x}}{16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2}+\frac {5 (-4+e) e^x x}{16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2}\right ) \, dx+8 \int \left (\frac {4}{\left (-e^5-x\right ) \left (16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2\right )}+\frac {5 (-4+e) e^{5+x}}{\left (e^5+x\right ) \left (16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2\right )}+\frac {5 (-4+e) e^x x}{\left (e^5+x\right ) \left (16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2\right )}\right ) \, dx\\ &=32 \int \frac {1}{-16-160 \left (1-\frac {e}{4}\right ) e^{5+x}-450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )-160 \left (1-\frac {e}{4}\right ) e^x x-900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x-450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2} \, dx+32 \int \frac {1}{\left (-e^5-x\right ) \left (16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2\right )} \, dx-(40 (4-e)) \int \frac {e^{5+x}}{16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2} \, dx-(40 (4-e)) \int \frac {e^x x}{16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2} \, dx-(40 (4-e)) \int \frac {e^{5+x}}{\left (e^5+x\right ) \left (16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2\right )} \, dx-(40 (4-e)) \int \frac {e^x x}{\left (e^5+x\right ) \left (16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2\right )} \, dx\\ &=32 \int \frac {1}{-16-160 \left (1-\frac {e}{4}\right ) e^{5+x}-450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )-160 \left (1-\frac {e}{4}\right ) e^x x-900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x-450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2} \, dx+32 \int \frac {1}{\left (-e^5-x\right ) \left (16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2\right )} \, dx-(40 (4-e)) \int \frac {e^{5+x}}{16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2} \, dx-(40 (4-e)) \int \frac {e^x x}{16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2} \, dx-(40 (4-e)) \int \frac {e^{5+x}}{\left (e^5+x\right ) \left (16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2\right )} \, dx-(40 (4-e)) \int \left (\frac {e^x}{16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2}+\frac {e^{5+x}}{\left (-e^5-x\right ) \left (16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2\right )}\right ) \, dx\\ &=32 \int \frac {1}{-16-160 \left (1-\frac {e}{4}\right ) e^{5+x}-450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )-160 \left (1-\frac {e}{4}\right ) e^x x-900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x-450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2} \, dx+32 \int \frac {1}{\left (-e^5-x\right ) \left (16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2\right )} \, dx-(40 (4-e)) \int \frac {e^x}{16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2} \, dx-(40 (4-e)) \int \frac {e^{5+x}}{16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2} \, dx-(40 (4-e)) \int \frac {e^{5+x}}{\left (-e^5-x\right ) \left (16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2\right )} \, dx-(40 (4-e)) \int \frac {e^x x}{16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2} \, dx-(40 (4-e)) \int \frac {e^{5+x}}{\left (e^5+x\right ) \left (16+160 \left (1-\frac {e}{4}\right ) e^{5+x}+450 e^{10+2 x} \left (1+\frac {1}{18} (-8+e) e\right )+160 \left (1-\frac {e}{4}\right ) e^x x+900 e^{5+2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x+450 e^{2 x} \left (1+\frac {1}{18} (-8+e) e\right ) x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.13, size = 144, normalized size = 6.00 \begin {gather*} 8 \left (-\frac {x}{4}-\frac {1}{4} \log \left (e^5+x\right )+\frac {1}{8} \log \left (16+160 e^{5+x}-40 e^{6+x}+450 e^{10+2 x}-200 e^{11+2 x}+25 e^{12+2 x}+160 e^x x-40 e^{1+x} x+900 e^{5+2 x} x-400 e^{6+2 x} x+50 e^{7+2 x} x+450 e^{2 x} x^2-200 e^{1+2 x} x^2+25 e^{2+2 x} x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.84, size = 89, normalized size = 3.71 \begin {gather*} -2 \, x + \log \left (\frac {25 \, {\left (x^{2} e^{2} - 8 \, x^{2} e + 18 \, x^{2} + 2 \, x e^{7} - 16 \, x e^{6} + 36 \, x e^{5} + e^{12} - 8 \, e^{11} + 18 \, e^{10}\right )} e^{\left (2 \, x\right )} - 40 \, {\left (x e - 4 \, x + e^{6} - 4 \, e^{5}\right )} e^{x} + 16}{x^{2} + 2 \, x e^{5} + e^{10}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.59, size = 92, normalized size = 3.83
method | result | size |
risch | \(-2 x +\ln \left ({\mathrm e}^{2 x}-\frac {8 \left ({\mathrm e}-4\right ) {\mathrm e}^{x}}{5 \left ({\mathrm e}^{7}-8 \,{\mathrm e}^{6}+18 \,{\mathrm e}^{5}+{\mathrm e}^{2} x -8 x \,{\mathrm e}+18 x \right )}+\frac {16}{25 \left ({\mathrm e}^{12}-8 \,{\mathrm e}^{11}+18 \,{\mathrm e}^{10}+2 x \,{\mathrm e}^{7}-16 x \,{\mathrm e}^{6}+36 x \,{\mathrm e}^{5}+x^{2} {\mathrm e}^{2}-8 x^{2} {\mathrm e}+18 x^{2}\right )}\right )\) | \(92\) |
norman | \(-2 x -2 \ln \left ({\mathrm e}^{5}+x \right )+\ln \left (25 \,{\mathrm e}^{10} {\mathrm e}^{2} {\mathrm e}^{2 x}+50 \,{\mathrm e}^{5} {\mathrm e}^{2} {\mathrm e}^{2 x} x +25 \,{\mathrm e}^{2} {\mathrm e}^{2 x} x^{2}-200 \,{\mathrm e}^{10} {\mathrm e} \,{\mathrm e}^{2 x}-400 \,{\mathrm e}^{5} {\mathrm e} \,{\mathrm e}^{2 x} x -200 \,{\mathrm e} \,{\mathrm e}^{2 x} x^{2}+450 \,{\mathrm e}^{10} {\mathrm e}^{2 x}+900 x \,{\mathrm e}^{5} {\mathrm e}^{2 x}+450 \,{\mathrm e}^{2 x} x^{2}-40 \,{\mathrm e}^{5} {\mathrm e} \,{\mathrm e}^{x}-40 x \,{\mathrm e} \,{\mathrm e}^{x}+160 \,{\mathrm e}^{5} {\mathrm e}^{x}+160 \,{\mathrm e}^{x} x +16\right )\) | \(143\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.56, size = 108, normalized size = 4.50 \begin {gather*} -2 \, x + \log \left (\frac {25 \, {\left (x^{2} {\left (e^{2} - 8 \, e + 18\right )} + 2 \, x {\left (e^{7} - 8 \, e^{6} + 18 \, e^{5}\right )} + e^{12} - 8 \, e^{11} + 18 \, e^{10}\right )} e^{\left (2 \, x\right )} - 40 \, {\left (x {\left (e - 4\right )} + e^{6} - 4 \, e^{5}\right )} e^{x} + 16}{25 \, {\left (x^{2} {\left (e^{2} - 8 \, e + 18\right )} + 2 \, x {\left (e^{7} - 8 \, e^{6} + 18 \, e^{5}\right )} + e^{12} - 8 \, e^{11} + 18 \, e^{10}\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {32\,x+32\,{\mathrm {e}}^5+{\mathrm {e}}^x\,\left (160\,x-\mathrm {e}\,\left (40\,x^2+40\,x\right )+160\,x^2-{\mathrm {e}}^{10}\,\left (40\,\mathrm {e}-160\right )+{\mathrm {e}}^5\,\left (320\,x-\mathrm {e}\,\left (80\,x+40\right )+160\right )\right )+32}{16\,x+16\,{\mathrm {e}}^5+{\mathrm {e}}^{2\,x}\,\left ({\mathrm {e}}^{10}\,\left (1350\,x-600\,x\,\mathrm {e}+75\,x\,{\mathrm {e}}^2\right )+{\mathrm {e}}^5\,\left (75\,x^2\,{\mathrm {e}}^2-600\,x^2\,\mathrm {e}+1350\,x^2\right )-200\,x^3\,\mathrm {e}+25\,x^3\,{\mathrm {e}}^2+{\mathrm {e}}^{15}\,\left (25\,{\mathrm {e}}^2-200\,\mathrm {e}+450\right )+450\,x^3\right )+{\mathrm {e}}^x\,\left ({\mathrm {e}}^5\,\left (320\,x-80\,x\,\mathrm {e}\right )-40\,x^2\,\mathrm {e}+160\,x^2-{\mathrm {e}}^{10}\,\left (40\,\mathrm {e}-160\right )\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 7.21, size = 110, normalized size = 4.58 \begin {gather*} - 2 x + \log {\left (e^{2 x} + \frac {16}{- 200 e x^{2} + 25 x^{2} e^{2} + 450 x^{2} - 400 x e^{6} + 50 x e^{7} + 900 x e^{5} - 200 e^{11} + 25 e^{12} + 450 e^{10}} + \frac {\left (32 - 8 e\right ) e^{x}}{- 40 e x + 5 x e^{2} + 90 x - 40 e^{6} + 5 e^{7} + 90 e^{5}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________