Optimal. Leaf size=26 \[ -e^{4+x} x+\left (2-e^4-\frac {2}{x}\right ) \log ^4(x) \]
________________________________________________________________________________________
Rubi [A] time = 0.29, antiderivative size = 37, normalized size of antiderivative = 1.42, number of steps used = 17, number of rules used = 9, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.204, Rules used = {14, 2176, 2194, 6742, 2353, 2305, 2304, 2302, 30} \begin {gather*} e^{x+4}-e^{x+4} (x+1)-\frac {2 \log ^4(x)}{x}+\left (2-e^4\right ) \log ^4(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 30
Rule 2176
Rule 2194
Rule 2302
Rule 2304
Rule 2305
Rule 2353
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-e^{4+x} (1+x)+\frac {2 \log ^3(x) \left (-4+4 \left (1-\frac {e^4}{2}\right ) x+\log (x)\right )}{x^2}\right ) \, dx\\ &=2 \int \frac {\log ^3(x) \left (-4+4 \left (1-\frac {e^4}{2}\right ) x+\log (x)\right )}{x^2} \, dx-\int e^{4+x} (1+x) \, dx\\ &=-e^{4+x} (1+x)+2 \int \left (\frac {2 \left (-2+\left (2-e^4\right ) x\right ) \log ^3(x)}{x^2}+\frac {\log ^4(x)}{x^2}\right ) \, dx+\int e^{4+x} \, dx\\ &=e^{4+x}-e^{4+x} (1+x)+2 \int \frac {\log ^4(x)}{x^2} \, dx+4 \int \frac {\left (-2+\left (2-e^4\right ) x\right ) \log ^3(x)}{x^2} \, dx\\ &=e^{4+x}-e^{4+x} (1+x)-\frac {2 \log ^4(x)}{x}+4 \int \left (-\frac {2 \log ^3(x)}{x^2}+\frac {\left (2-e^4\right ) \log ^3(x)}{x}\right ) \, dx+8 \int \frac {\log ^3(x)}{x^2} \, dx\\ &=e^{4+x}-e^{4+x} (1+x)-\frac {8 \log ^3(x)}{x}-\frac {2 \log ^4(x)}{x}-8 \int \frac {\log ^3(x)}{x^2} \, dx+24 \int \frac {\log ^2(x)}{x^2} \, dx+\left (4 \left (2-e^4\right )\right ) \int \frac {\log ^3(x)}{x} \, dx\\ &=e^{4+x}-e^{4+x} (1+x)-\frac {24 \log ^2(x)}{x}-\frac {2 \log ^4(x)}{x}-24 \int \frac {\log ^2(x)}{x^2} \, dx+48 \int \frac {\log (x)}{x^2} \, dx+\left (4 \left (2-e^4\right )\right ) \operatorname {Subst}\left (\int x^3 \, dx,x,\log (x)\right )\\ &=e^{4+x}-\frac {48}{x}-e^{4+x} (1+x)-\frac {48 \log (x)}{x}+\left (2-e^4\right ) \log ^4(x)-\frac {2 \log ^4(x)}{x}-48 \int \frac {\log (x)}{x^2} \, dx\\ &=e^{4+x}-e^{4+x} (1+x)+\left (2-e^4\right ) \log ^4(x)-\frac {2 \log ^4(x)}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 26, normalized size = 1.00 \begin {gather*} -e^{4+x} x+\left (2-e^4-\frac {2}{x}\right ) \log ^4(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 28, normalized size = 1.08 \begin {gather*} -\frac {{\left (x e^{4} - 2 \, x + 2\right )} \log \relax (x)^{4} + x^{2} e^{\left (x + 4\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 35, normalized size = 1.35 \begin {gather*} -\frac {x e^{4} \log \relax (x)^{4} - 2 \, x \log \relax (x)^{4} + 2 \, \log \relax (x)^{4} + x^{2} e^{\left (x + 4\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 27, normalized size = 1.04
method | result | size |
risch | \(-\frac {\left (x \,{\mathrm e}^{4}-2 x +2\right ) \ln \relax (x )^{4}}{x}-x \,{\mathrm e}^{4+x}\) | \(27\) |
default | \(-{\mathrm e}^{4+x} \left (4+x \right )+4 \,{\mathrm e}^{4+x}-\frac {2 \ln \relax (x )^{4}}{x}-{\mathrm e}^{4} \ln \relax (x )^{4}+2 \ln \relax (x )^{4}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 82, normalized size = 3.15 \begin {gather*} -e^{4} \log \relax (x)^{4} + 2 \, \log \relax (x)^{4} - {\left (x e^{4} - e^{4}\right )} e^{x} - \frac {2 \, {\left (\log \relax (x)^{4} + 4 \, \log \relax (x)^{3} + 12 \, \log \relax (x)^{2} + 24 \, \log \relax (x) + 24\right )}}{x} + \frac {8 \, {\left (\log \relax (x)^{3} + 3 \, \log \relax (x)^{2} + 6 \, \log \relax (x) + 6\right )}}{x} - e^{\left (x + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.21, size = 27, normalized size = 1.04 \begin {gather*} -x\,{\mathrm {e}}^{x+4}-{\ln \relax (x)}^4\,\left ({\mathrm {e}}^4-2\right )-\frac {2\,{\ln \relax (x)}^4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 22, normalized size = 0.85 \begin {gather*} - x e^{x + 4} + \frac {\left (- x e^{4} + 2 x - 2\right ) \log {\relax (x )}^{4}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________