Optimal. Leaf size=33 \[ \frac {-4+e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}}}{9 \left (x-x^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 7.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {(4-8 x) \log ^2\left (\frac {x^2}{4}\right )+e^{\frac {x-x \log \left (\frac {x^2}{4}\right )}{\log \left (\frac {x^2}{4}\right )}} \left (-2 x+2 x^2+\left (x-x^2\right ) \log \left (\frac {x^2}{4}\right )+\left (-1+x+x^2\right ) \log ^2\left (\frac {x^2}{4}\right )\right )}{\left (9 x^2-18 x^3+9 x^4\right ) \log ^2\left (\frac {x^2}{4}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(4-8 x) \log ^2\left (\frac {x^2}{4}\right )+e^{\frac {x-x \log \left (\frac {x^2}{4}\right )}{\log \left (\frac {x^2}{4}\right )}} \left (-2 x+2 x^2+\left (x-x^2\right ) \log \left (\frac {x^2}{4}\right )+\left (-1+x+x^2\right ) \log ^2\left (\frac {x^2}{4}\right )\right )}{x^2 \left (9-18 x+9 x^2\right ) \log ^2\left (\frac {x^2}{4}\right )} \, dx\\ &=\int \frac {(4-8 x) \log ^2\left (\frac {x^2}{4}\right )+e^{\frac {x-x \log \left (\frac {x^2}{4}\right )}{\log \left (\frac {x^2}{4}\right )}} \left (-2 x+2 x^2+\left (x-x^2\right ) \log \left (\frac {x^2}{4}\right )+\left (-1+x+x^2\right ) \log ^2\left (\frac {x^2}{4}\right )\right )}{9 (-1+x)^2 x^2 \log ^2\left (\frac {x^2}{4}\right )} \, dx\\ &=\frac {1}{9} \int \frac {(4-8 x) \log ^2\left (\frac {x^2}{4}\right )+e^{\frac {x-x \log \left (\frac {x^2}{4}\right )}{\log \left (\frac {x^2}{4}\right )}} \left (-2 x+2 x^2+\left (x-x^2\right ) \log \left (\frac {x^2}{4}\right )+\left (-1+x+x^2\right ) \log ^2\left (\frac {x^2}{4}\right )\right )}{(-1+x)^2 x^2 \log ^2\left (\frac {x^2}{4}\right )} \, dx\\ &=\frac {1}{9} \int \left (-\frac {4 (-1+2 x)}{(-1+x)^2 x^2}+\frac {e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}} \left (-2 x+2 x^2+x \log \left (\frac {x^2}{4}\right )-x^2 \log \left (\frac {x^2}{4}\right )-\log ^2\left (\frac {x^2}{4}\right )+x \log ^2\left (\frac {x^2}{4}\right )+x^2 \log ^2\left (\frac {x^2}{4}\right )\right )}{(1-x)^2 x^2 \log ^2\left (\frac {x^2}{4}\right )}\right ) \, dx\\ &=\frac {1}{9} \int \frac {e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}} \left (-2 x+2 x^2+x \log \left (\frac {x^2}{4}\right )-x^2 \log \left (\frac {x^2}{4}\right )-\log ^2\left (\frac {x^2}{4}\right )+x \log ^2\left (\frac {x^2}{4}\right )+x^2 \log ^2\left (\frac {x^2}{4}\right )\right )}{(1-x)^2 x^2 \log ^2\left (\frac {x^2}{4}\right )} \, dx-\frac {4}{9} \int \frac {-1+2 x}{(-1+x)^2 x^2} \, dx\\ &=-\frac {4}{9 (1-x) x}+\frac {1}{9} \int \frac {e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}} \left (2 (-1+x) x-(-1+x) x \log \left (\frac {x^2}{4}\right )+\left (-1+x+x^2\right ) \log ^2\left (\frac {x^2}{4}\right )\right )}{(1-x)^2 x^2 \log ^2\left (\frac {x^2}{4}\right )} \, dx\\ &=-\frac {4}{9 (1-x) x}+\frac {1}{9} \int \left (\frac {e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}} \left (-1+x+x^2\right )}{(-1+x)^2 x^2}+\frac {2 e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}}}{(-1+x) x \log ^2\left (\frac {x^2}{4}\right )}-\frac {e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}}}{(-1+x) x \log \left (\frac {x^2}{4}\right )}\right ) \, dx\\ &=-\frac {4}{9 (1-x) x}+\frac {1}{9} \int \frac {e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}} \left (-1+x+x^2\right )}{(-1+x)^2 x^2} \, dx-\frac {1}{9} \int \frac {e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}}}{(-1+x) x \log \left (\frac {x^2}{4}\right )} \, dx+\frac {2}{9} \int \frac {e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}}}{(-1+x) x \log ^2\left (\frac {x^2}{4}\right )} \, dx\\ &=-\frac {4}{9 (1-x) x}+\frac {1}{9} \int \left (\frac {e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}}}{(-1+x)^2}+\frac {e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}}}{-1+x}-\frac {e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}}}{x^2}-\frac {e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}}}{x}\right ) \, dx-\frac {1}{9} \int \left (\frac {e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}}}{(-1+x) \log \left (\frac {x^2}{4}\right )}-\frac {e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}}}{x \log \left (\frac {x^2}{4}\right )}\right ) \, dx+\frac {2}{9} \int \left (\frac {e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}}}{(-1+x) \log ^2\left (\frac {x^2}{4}\right )}-\frac {e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}}}{x \log ^2\left (\frac {x^2}{4}\right )}\right ) \, dx\\ &=-\frac {4}{9 (1-x) x}+\frac {1}{9} \int \frac {e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}}}{(-1+x)^2} \, dx+\frac {1}{9} \int \frac {e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}}}{-1+x} \, dx-\frac {1}{9} \int \frac {e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}}}{x^2} \, dx-\frac {1}{9} \int \frac {e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}}}{x} \, dx-\frac {1}{9} \int \frac {e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}}}{(-1+x) \log \left (\frac {x^2}{4}\right )} \, dx+\frac {1}{9} \int \frac {e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}}}{x \log \left (\frac {x^2}{4}\right )} \, dx+\frac {2}{9} \int \frac {e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}}}{(-1+x) \log ^2\left (\frac {x^2}{4}\right )} \, dx-\frac {2}{9} \int \frac {e^{-x+\frac {x}{\log \left (\frac {x^2}{4}\right )}}}{x \log ^2\left (\frac {x^2}{4}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 39, normalized size = 1.18 \begin {gather*} \frac {e^{-x} \left (4 e^x-e^{\frac {x}{\log \left (\frac {x^2}{4}\right )}}\right )}{9 (-1+x) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 36, normalized size = 1.09 \begin {gather*} -\frac {e^{\left (-\frac {x \log \left (\frac {1}{4} \, x^{2}\right ) - x}{\log \left (\frac {1}{4} \, x^{2}\right )}\right )} - 4}{9 \, {\left (x^{2} - x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 2.29, size = 36, normalized size = 1.09 \begin {gather*} -\frac {e^{\left (-\frac {x \log \left (\frac {1}{4} \, x^{2}\right ) - x}{\log \left (\frac {1}{4} \, x^{2}\right )}\right )} - 4}{9 \, {\left (x^{2} - x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.61, size = 42, normalized size = 1.27
method | result | size |
risch | \(\frac {4}{9 x \left (x -1\right )}-\frac {{\mathrm e}^{-\frac {x \left (\ln \left (\frac {x^{2}}{4}\right )-1\right )}{\ln \left (\frac {x^{2}}{4}\right )}}}{9 x \left (x -1\right )}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 35, normalized size = 1.06 \begin {gather*} \frac {{\left (4 \, e^{x} - e^{\left (-\frac {x}{2 \, {\left (\log \relax (2) - \log \relax (x)\right )}}\right )}\right )} e^{\left (-x\right )}}{9 \, {\left (x^{2} - x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.30, size = 65, normalized size = 1.97 \begin {gather*} \frac {2^{\frac {2\,x}{\ln \left (\frac {x^2}{4}\right )}}\,{\mathrm {e}}^{\frac {x}{\ln \left (\frac {x^2}{4}\right )}}}{9\,\left (x-x^2\right )\,{\left (x^2\right )}^{\frac {x}{\ln \left (\frac {x^2}{4}\right )}}}-\frac {4}{9\,\left (x-x^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.55, size = 36, normalized size = 1.09 \begin {gather*} - \frac {e^{\frac {- x \log {\left (\frac {x^{2}}{4} \right )} + x}{\log {\left (\frac {x^{2}}{4} \right )}}}}{9 x^{2} - 9 x} + \frac {4}{9 x^{2} - 9 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________