Optimal. Leaf size=15 \[ -15+e^x+x+\frac {x}{1+3 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 16, normalized size of antiderivative = 1.07, number of steps used = 6, number of rules used = 4, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.108, Rules used = {27, 6742, 2194, 683} \begin {gather*} x+e^x-\frac {1}{3 (3 x+1)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 683
Rule 2194
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2+6 x+9 x^2+e^x \left (1+6 x+9 x^2\right )}{(1+3 x)^2} \, dx\\ &=\int \left (e^x+\frac {2+6 x+9 x^2}{(1+3 x)^2}\right ) \, dx\\ &=\int e^x \, dx+\int \frac {2+6 x+9 x^2}{(1+3 x)^2} \, dx\\ &=e^x+\int \left (1+\frac {1}{(1+3 x)^2}\right ) \, dx\\ &=e^x+x-\frac {1}{3 (1+3 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 16, normalized size = 1.07 \begin {gather*} e^x+x-\frac {1}{3 (1+3 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 28, normalized size = 1.87 \begin {gather*} \frac {9 \, x^{2} + 3 \, {\left (3 \, x + 1\right )} e^{x} + 3 \, x - 1}{3 \, {\left (3 \, x + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 28, normalized size = 1.87 \begin {gather*} \frac {9 \, x^{2} + 9 \, x e^{x} + 3 \, x + 3 \, e^{x} - 1}{3 \, {\left (3 \, x + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 12, normalized size = 0.80
method | result | size |
risch | \(x -\frac {1}{9 \left (x +\frac {1}{3}\right )}+{\mathrm e}^{x}\) | \(12\) |
default | \(x -\frac {1}{3 \left (3 x +1\right )}+{\mathrm e}^{x}\) | \(14\) |
norman | \(\frac {2 x +3 x^{2}+3 \,{\mathrm e}^{x} x +{\mathrm e}^{x}}{3 x +1}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x + \frac {3 \, {\left (3 \, x^{2} + 2 \, x\right )} e^{x}}{9 \, x^{2} + 6 \, x + 1} - \frac {e^{\left (-\frac {1}{3}\right )} E_{2}\left (-x - \frac {1}{3}\right )}{3 \, {\left (3 \, x + 1\right )}} - \frac {1}{3 \, {\left (3 \, x + 1\right )}} - 6 \, \int \frac {e^{x}}{27 \, x^{3} + 27 \, x^{2} + 9 \, x + 1}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 13, normalized size = 0.87 \begin {gather*} x+{\mathrm {e}}^x-\frac {1}{3\,\left (3\,x+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 10, normalized size = 0.67 \begin {gather*} x + e^{x} - \frac {1}{9 x + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________