Optimal. Leaf size=24 \[ \frac {x+x \left (3+x^2\right )}{\left (\frac {1}{4}-e^x\right )^2 x^2} \]
________________________________________________________________________________________
Rubi [F] time = 1.20, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {64-16 x^2+e^x \left (-256-512 x+64 x^2-128 x^3\right )}{-x^2+12 e^x x^2-48 e^{2 x} x^2+64 e^{3 x} x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {16 \left (-4+x^2+4 e^x \left (4+8 x-x^2+2 x^3\right )\right )}{\left (1-4 e^x\right )^3 x^2} \, dx\\ &=16 \int \frac {-4+x^2+4 e^x \left (4+8 x-x^2+2 x^3\right )}{\left (1-4 e^x\right )^3 x^2} \, dx\\ &=16 \int \left (-\frac {2 \left (4+x^2\right )}{\left (-1+4 e^x\right )^3 x}-\frac {4+8 x-x^2+2 x^3}{\left (-1+4 e^x\right )^2 x^2}\right ) \, dx\\ &=-\left (16 \int \frac {4+8 x-x^2+2 x^3}{\left (-1+4 e^x\right )^2 x^2} \, dx\right )-32 \int \frac {4+x^2}{\left (-1+4 e^x\right )^3 x} \, dx\\ &=-\left (16 \int \left (-\frac {1}{\left (-1+4 e^x\right )^2}+\frac {4}{\left (-1+4 e^x\right )^2 x^2}+\frac {8}{\left (-1+4 e^x\right )^2 x}+\frac {2 x}{\left (-1+4 e^x\right )^2}\right ) \, dx\right )-32 \int \left (\frac {4}{\left (-1+4 e^x\right )^3 x}+\frac {x}{\left (-1+4 e^x\right )^3}\right ) \, dx\\ &=16 \int \frac {1}{\left (-1+4 e^x\right )^2} \, dx-32 \int \frac {x}{\left (-1+4 e^x\right )^3} \, dx-32 \int \frac {x}{\left (-1+4 e^x\right )^2} \, dx-64 \int \frac {1}{\left (-1+4 e^x\right )^2 x^2} \, dx-128 \int \frac {1}{\left (-1+4 e^x\right )^3 x} \, dx-128 \int \frac {1}{\left (-1+4 e^x\right )^2 x} \, dx\\ &=16 \operatorname {Subst}\left (\int \frac {1}{x (-1+4 x)^2} \, dx,x,e^x\right )+32 \int \frac {x}{\left (-1+4 e^x\right )^2} \, dx+32 \int \frac {x}{-1+4 e^x} \, dx-64 \int \frac {1}{\left (-1+4 e^x\right )^2 x^2} \, dx-128 \int \frac {1}{\left (-1+4 e^x\right )^3 x} \, dx-128 \int \frac {1}{\left (-1+4 e^x\right )^2 x} \, dx-128 \int \frac {e^x x}{\left (-1+4 e^x\right )^3} \, dx-128 \int \frac {e^x x}{\left (-1+4 e^x\right )^2} \, dx\\ &=\frac {16 x}{\left (1-4 e^x\right )^2}-\frac {32 x}{1-4 e^x}-16 x^2-16 \int \frac {1}{\left (-1+4 e^x\right )^2} \, dx+16 \operatorname {Subst}\left (\int \left (\frac {1}{x}+\frac {4}{(-1+4 x)^2}-\frac {4}{-1+4 x}\right ) \, dx,x,e^x\right )-32 \int \frac {1}{-1+4 e^x} \, dx-32 \int \frac {x}{-1+4 e^x} \, dx-64 \int \frac {1}{\left (-1+4 e^x\right )^2 x^2} \, dx-128 \int \frac {1}{\left (-1+4 e^x\right )^3 x} \, dx-128 \int \frac {1}{\left (-1+4 e^x\right )^2 x} \, dx+128 \int \frac {e^x x}{\left (-1+4 e^x\right )^2} \, dx+128 \int \frac {e^x x}{-1+4 e^x} \, dx\\ &=\frac {16}{1-4 e^x}+16 x+\frac {16 x}{\left (1-4 e^x\right )^2}-16 \log \left (1-4 e^x\right )+32 x \log \left (1-4 e^x\right )-16 \operatorname {Subst}\left (\int \frac {1}{x (-1+4 x)^2} \, dx,x,e^x\right )+32 \int \frac {1}{-1+4 e^x} \, dx-32 \int \log \left (1-4 e^x\right ) \, dx-32 \operatorname {Subst}\left (\int \frac {1}{x (-1+4 x)} \, dx,x,e^x\right )-64 \int \frac {1}{\left (-1+4 e^x\right )^2 x^2} \, dx-128 \int \frac {1}{\left (-1+4 e^x\right )^3 x} \, dx-128 \int \frac {1}{\left (-1+4 e^x\right )^2 x} \, dx-128 \int \frac {e^x x}{-1+4 e^x} \, dx\\ &=\frac {16}{1-4 e^x}+16 x+\frac {16 x}{\left (1-4 e^x\right )^2}-16 \log \left (1-4 e^x\right )-16 \operatorname {Subst}\left (\int \left (\frac {1}{x}+\frac {4}{(-1+4 x)^2}-\frac {4}{-1+4 x}\right ) \, dx,x,e^x\right )+32 \int \log \left (1-4 e^x\right ) \, dx+32 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^x\right )+32 \operatorname {Subst}\left (\int \frac {1}{x (-1+4 x)} \, dx,x,e^x\right )-32 \operatorname {Subst}\left (\int \frac {\log (1-4 x)}{x} \, dx,x,e^x\right )-64 \int \frac {1}{\left (-1+4 e^x\right )^2 x^2} \, dx-128 \int \frac {1}{\left (-1+4 e^x\right )^3 x} \, dx-128 \int \frac {1}{\left (-1+4 e^x\right )^2 x} \, dx-128 \operatorname {Subst}\left (\int \frac {1}{-1+4 x} \, dx,x,e^x\right )\\ &=32 x+\frac {16 x}{\left (1-4 e^x\right )^2}-32 \log \left (1-4 e^x\right )+32 \text {Li}_2\left (4 e^x\right )-32 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^x\right )+32 \operatorname {Subst}\left (\int \frac {\log (1-4 x)}{x} \, dx,x,e^x\right )-64 \int \frac {1}{\left (-1+4 e^x\right )^2 x^2} \, dx-128 \int \frac {1}{\left (-1+4 e^x\right )^3 x} \, dx-128 \int \frac {1}{\left (-1+4 e^x\right )^2 x} \, dx+128 \operatorname {Subst}\left (\int \frac {1}{-1+4 x} \, dx,x,e^x\right )\\ &=\frac {16 x}{\left (1-4 e^x\right )^2}-64 \int \frac {1}{\left (-1+4 e^x\right )^2 x^2} \, dx-128 \int \frac {1}{\left (-1+4 e^x\right )^3 x} \, dx-128 \int \frac {1}{\left (-1+4 e^x\right )^2 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 21, normalized size = 0.88 \begin {gather*} -\frac {16 \left (-4-x^2\right )}{\left (-1+4 e^x\right )^2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 23, normalized size = 0.96 \begin {gather*} \frac {16 \, {\left (x^{2} + 4\right )}}{16 \, x e^{\left (2 \, x\right )} - 8 \, x e^{x} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 23, normalized size = 0.96 \begin {gather*} \frac {16 \, {\left (x^{2} + 4\right )}}{16 \, x e^{\left (2 \, x\right )} - 8 \, x e^{x} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 19, normalized size = 0.79
method | result | size |
risch | \(\frac {16 x^{2}+64}{x \left (4 \,{\mathrm e}^{x}-1\right )^{2}}\) | \(19\) |
norman | \(\frac {16 x^{2}+64}{x \left (4 \,{\mathrm e}^{x}-1\right )^{2}}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 23, normalized size = 0.96 \begin {gather*} \frac {16 \, {\left (x^{2} + 4\right )}}{16 \, x e^{\left (2 \, x\right )} - 8 \, x e^{x} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.14, size = 18, normalized size = 0.75 \begin {gather*} \frac {16\,\left (x^2+4\right )}{x\,{\left (4\,{\mathrm {e}}^x-1\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 22, normalized size = 0.92 \begin {gather*} \frac {16 x^{2} + 64}{16 x e^{2 x} - 8 x e^{x} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________