3.38.88 e6+5e10x5xlog(25x)10+5x(1610e105x+10log(25x))2020x+5x2dx

Optimal. Leaf size=26 ex(e1065xlog(25x))2+x

________________________________________________________________________________________

Rubi [F]  time = 1.93, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} e6+5e10x5xlog(25x)10+5x(1610e105x+10log(25x))2020x+5x2dx

Verification is not applicable to the result.

[In]

Int[(E^((-6 + 5*E^10*x - 5*x*Log[25*x])/(-10 + 5*x))*(16 - 10*E^10 - 5*x + 10*Log[25*x]))/(20 - 20*x + 5*x^2),
x]

[Out]

(2*(3 - 5*E^10)*Defer[Int][E^((-6 + 5*E^10*x - 5*x*Log[25*x])/(-10 + 5*x))/(-2 + x)^2, x])/5 - Defer[Int][E^((
-6 + 5*E^10*x - 5*x*Log[25*x])/(-10 + 5*x))/(-2 + x), x] + 2*Defer[Int][(E^((-6 + 5*E^10*x - 5*x*Log[25*x])/(-
10 + 5*x))*Log[25*x])/(-2 + x)^2, x]

Rubi steps

integral=e6+5e10x5xlog(25x)10+5x(1610e105x+10log(25x))5(2+x)2dx=15e6+5e10x5xlog(25x)10+5x(1610e105x+10log(25x))(2+x)2dx=15e6+5e10x5xlog(25x)10+5x(16(15e108)5x+10log(25x))(2x)2dx=15(e6+5e10x5xlog(25x)10+5x(1610e105x)(2+x)2+10e6+5e10x5xlog(25x)10+5xlog(25x)(2+x)2)dx=15e6+5e10x5xlog(25x)10+5x(1610e105x)(2+x)2dx+2e6+5e10x5xlog(25x)10+5xlog(25x)(2+x)2dx=15(2e6+5e10x5xlog(25x)10+5x(3+5e10)(2+x)25e6+5e10x5xlog(25x)10+5x2+x)dx+2e6+5e10x5xlog(25x)10+5xlog(25x)(2+x)2dx=2e6+5e10x5xlog(25x)10+5xlog(25x)(2+x)2dx+15(2(35e10))e6+5e10x5xlog(25x)10+5x(2+x)2dxe6+5e10x5xlog(25x)10+5x2+xdx

________________________________________________________________________________________

Mathematica [A]  time = 0.37, size = 44, normalized size = 1.69 51+2+x2xe65e10x105xxx2+x

Antiderivative was successfully verified.

[In]

Integrate[(E^((-6 + 5*E^10*x - 5*x*Log[25*x])/(-10 + 5*x))*(16 - 10*E^10 - 5*x + 10*Log[25*x]))/(20 - 20*x + 5
*x^2),x]

[Out]

(5^(-1 + (2 + x)/(2 - x))*E^((6 - 5*E^10*x)/(10 - 5*x)))/x^(x/(-2 + x))

________________________________________________________________________________________

fricas [A]  time = 0.63, size = 22, normalized size = 0.85 e(5xe105xlog(25x)65(x2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((10*log(25*x)-10*exp(5)^2-5*x+16)*exp((-5*x*log(25*x)+5*x*exp(5)^2-6)/(5*x-10))/(5*x^2-20*x+20),x, a
lgorithm="fricas")

[Out]

e^(1/5*(5*x*e^10 - 5*x*log(25*x) - 6)/(x - 2))

________________________________________________________________________________________

giac [A]  time = 0.25, size = 30, normalized size = 1.15 e(xe10x2xlog(25x)x265(x2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((10*log(25*x)-10*exp(5)^2-5*x+16)*exp((-5*x*log(25*x)+5*x*exp(5)^2-6)/(5*x-10))/(5*x^2-20*x+20),x, a
lgorithm="giac")

[Out]

e^(x*e^10/(x - 2) - x*log(25*x)/(x - 2) - 6/5/(x - 2))

________________________________________________________________________________________

maple [A]  time = 0.14, size = 23, normalized size = 0.88




method result size



risch e5xln(25x)+5xe1065x10 23
norman xe5xln(25x)+5xe1065x102e5xln(25x)+5xe1065x10x2 62



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((10*ln(25*x)-10*exp(5)^2-5*x+16)*exp((-5*x*ln(25*x)+5*x*exp(5)^2-6)/(5*x-10))/(5*x^2-20*x+20),x,method=_RE
TURNVERBOSE)

[Out]

exp(1/5*(-5*x*ln(25*x)+5*x*exp(10)-6)/(x-2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 15(5x+10e1010log(25x)16)e(5xe105xlog(25x)65(x2))x24x+4dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((10*log(25*x)-10*exp(5)^2-5*x+16)*exp((-5*x*log(25*x)+5*x*exp(5)^2-6)/(5*x-10))/(5*x^2-20*x+20),x, a
lgorithm="maxima")

[Out]

-1/5*integrate((5*x + 10*e^10 - 10*log(25*x) - 16)*e^(1/5*(5*x*e^10 - 5*x*log(25*x) - 6)/(x - 2))/(x^2 - 4*x +
 4), x)

________________________________________________________________________________________

mupad [B]  time = 2.50, size = 52, normalized size = 2.00 e5xe105x10e65x10510x5x10x5x5x10

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(-(5*x*log(25*x) - 5*x*exp(10) + 6)/(5*x - 10))*(5*x - 10*log(25*x) + 10*exp(10) - 16))/(5*x^2 - 20*x
 + 20),x)

[Out]

(exp((5*x*exp(10))/(5*x - 10))*exp(-6/(5*x - 10)))/(5^((10*x)/(5*x - 10))*x^((5*x)/(5*x - 10)))

________________________________________________________________________________________

sympy [A]  time = 0.58, size = 22, normalized size = 0.85 e5xlog(25x)+5xe1065x10

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((10*ln(25*x)-10*exp(5)**2-5*x+16)*exp((-5*x*ln(25*x)+5*x*exp(5)**2-6)/(5*x-10))/(5*x**2-20*x+20),x)

[Out]

exp((-5*x*log(25*x) + 5*x*exp(10) - 6)/(5*x - 10))

________________________________________________________________________________________