Optimal. Leaf size=28 \[ 25+e^{5 x}+e^{e^{\frac {1}{2} \left (\frac {4}{3}-x\right )-x} x} \]
________________________________________________________________________________________
Rubi [F] time = 0.55, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{2} e^{\frac {1}{6} (4-9 x)} \left (10 e^{5 x+\frac {1}{6} (-4+9 x)}+e^{e^{\frac {1}{6} (4-9 x)} x} (2-3 x)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int e^{\frac {1}{6} (4-9 x)} \left (10 e^{5 x+\frac {1}{6} (-4+9 x)}+e^{e^{\frac {1}{6} (4-9 x)} x} (2-3 x)\right ) \, dx\\ &=\frac {1}{2} \int \left (10 e^{5 x}+e^{\frac {2}{3}+\left (-\frac {3}{2}+e^{\frac {2}{3}-\frac {3 x}{2}}\right ) x} (2-3 x)\right ) \, dx\\ &=\frac {1}{2} \int e^{\frac {2}{3}+\left (-\frac {3}{2}+e^{\frac {2}{3}-\frac {3 x}{2}}\right ) x} (2-3 x) \, dx+5 \int e^{5 x} \, dx\\ &=e^{5 x}+\frac {1}{2} \int \left (2 e^{\frac {2}{3}+\left (-\frac {3}{2}+e^{\frac {2}{3}-\frac {3 x}{2}}\right ) x}-3 e^{\frac {2}{3}+\left (-\frac {3}{2}+e^{\frac {2}{3}-\frac {3 x}{2}}\right ) x} x\right ) \, dx\\ &=e^{5 x}-\frac {3}{2} \int e^{\frac {2}{3}+\left (-\frac {3}{2}+e^{\frac {2}{3}-\frac {3 x}{2}}\right ) x} x \, dx+\int e^{\frac {2}{3}+\left (-\frac {3}{2}+e^{\frac {2}{3}-\frac {3 x}{2}}\right ) x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 21, normalized size = 0.75 \begin {gather*} e^{5 x}+e^{e^{\frac {2}{3}-\frac {3 x}{2}} x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 24, normalized size = 0.86 \begin {gather*} {\left (e^{\frac {20}{9}} + e^{\left (x e^{\left (-\frac {3}{2} \, x + \frac {2}{3}\right )} - 5 \, x + \frac {20}{9}\right )}\right )} e^{\left (5 \, x - \frac {20}{9}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 28, normalized size = 1.00 \begin {gather*} {\left (e^{\left (x e^{\left (-\frac {3}{2} \, x + \frac {2}{3}\right )} - \frac {3}{2} \, x + \frac {2}{3}\right )} + e^{\left (\frac {7}{2} \, x + \frac {2}{3}\right )}\right )} e^{\left (\frac {3}{2} \, x - \frac {2}{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 15, normalized size = 0.54
method | result | size |
risch | \({\mathrm e}^{5 x}+{\mathrm e}^{x \,{\mathrm e}^{-\frac {3 x}{2}+\frac {2}{3}}}\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 14, normalized size = 0.50 \begin {gather*} e^{\left (x e^{\left (-\frac {3}{2} \, x + \frac {2}{3}\right )}\right )} + e^{\left (5 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.41, size = 14, normalized size = 0.50 \begin {gather*} {\mathrm {e}}^{5\,x}+{\mathrm {e}}^{\frac {x\,{\mathrm {e}}^{2/3}}{{\left ({\mathrm {e}}^x\right )}^{3/2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 20, normalized size = 0.71 \begin {gather*} e^{5 x} + e^{\frac {x e^{\frac {2}{3}}}{\left (e^{5 x}\right )^{\frac {3}{10}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________