3.38.90 8e2x8x232x3+x4+ex(16x+44x213x3)+(3x4+ex(4x3+x4))log(x)+(8x3+ex(12x24x3))log(x2)2e2x4exx+2x2dx

Optimal. Leaf size=31 2x(2+x2(314xlog(x)+log(x2))exx)

________________________________________________________________________________________

Rubi [F]  time = 2.83, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 8e2x8x232x3+x4+ex(16x+44x213x3)+(3x4+ex(4x3+x4))log(x)+(8x3+ex(12x24x3))log(x2)2e2x4exx+2x2dx

Verification is not applicable to the result.

[In]

Int[(-8*E^(2*x) - 8*x^2 - 32*x^3 + x^4 + E^x*(16*x + 44*x^2 - 13*x^3) + (3*x^4 + E^x*(-4*x^3 + x^4))*Log[x] +
(-8*x^3 + E^x*(12*x^2 - 4*x^3))*Log[x^2])/(2*E^(2*x) - 4*E^x*x + 2*x^2),x]

[Out]

-4*x + 22*Defer[Int][x^2/(E^x - x), x] + 6*Log[x^2]*Defer[Int][x^2/(E^x - x), x] + 6*Defer[Int][x^3/(E^x - x)^
2, x] + 2*Log[x^2]*Defer[Int][x^3/(E^x - x)^2, x] - (13*Defer[Int][x^3/(E^x - x), x])/2 - 2*Log[x]*Defer[Int][
x^3/(E^x - x), x] - 2*Log[x^2]*Defer[Int][x^3/(E^x - x), x] - 6*Defer[Int][x^4/(E^x - x)^2, x] - (Log[x]*Defer
[Int][x^4/(E^x - x)^2, x])/2 - 2*Log[x^2]*Defer[Int][x^4/(E^x - x)^2, x] + (Log[x]*Defer[Int][x^4/(E^x - x), x
])/2 + (Log[x]*Defer[Int][x^5/(E^x - x)^2, x])/2 - 12*Defer[Int][Defer[Int][x^2/(E^x - x), x]/x, x] - 4*Defer[
Int][Defer[Int][x^3/(E^x - x)^2, x]/x, x] + 6*Defer[Int][Defer[Int][x^3/(E^x - x), x]/x, x] + (9*Defer[Int][De
fer[Int][x^4/(E^x - x)^2, x]/x, x])/2 - Defer[Int][Defer[Int][x^4/(E^x - x), x]/x, x]/2 - Defer[Int][Defer[Int
][x^5/(E^x - x)^2, x]/x, x]/2

Rubi steps

integral=8e2x8x232x3+x4+ex(16x+44x213x3)+(3x4+ex(4x3+x4))log(x)+(8x3+ex(12x24x3))log(x2)2(exx)2dx=128e2x8x232x3+x4+ex(16x+44x213x3)+(3x4+ex(4x3+x4))log(x)+(8x3+ex(12x24x3))log(x2)(exx)2dx=12(8+(1+x)x3(12+xlog(x)4log(x2))(exx)2+x2(4413x4xlog(x)+x2log(x)+12log(x2)4xlog(x2))exx)dx=4x+12(1+x)x3(12+xlog(x)4log(x2))(exx)2dx+12x2(4413x4xlog(x)+x2log(x)+12log(x2)4xlog(x2))exxdx=4x+12(x3(12+xlog(x)4log(x2))(exx)2+x4(12+xlog(x)4log(x2))(exx)2)dx+12x2(4413x+(4+x)xlog(x)4(3+x)log(x2))exxdx=4x12x3(12+xlog(x)4log(x2))(exx)2dx+12x4(12+xlog(x)4log(x2))(exx)2dx+12(44x2exx13x3exx4x3log(x)exx+x4log(x)exx+12x2log(x2)exx4x3log(x2)exx)dx=4x+12x4log(x)exxdx12(12x3(exx)2+x4log(x)(exx)24x3log(x2)(exx)2)dx+12(12x4(exx)2+x5log(x)(exx)24x4log(x2)(exx)2)dx2x3log(x)exxdx2x3log(x2)exxdx+6x2log(x2)exxdx132x3exxdx+22x2exxdx=4x12x4log(x)(exx)2dx+12x5log(x)(exx)2dx12x4exxdxxdx+2x3log(x2)(exx)2dx2x4log(x2)(exx)2dx+2x3exxdxxdx+22x3exxdxxdx+6x3(exx)2dx6x4(exx)2dx62x2exxdxxdx132x3exxdx+22x2exxdx+12log(x)x4exxdx(2log(x))x3exxdx(2log(x2))x3exxdx+(6log(x2))x2exxdx=4x+12x4(exx)2dxxdx12x4exxdxxdx12x5(exx)2dxxdx22x3(exx)2dxxdx+2x3exxdxxdx+22x4(exx)2dxxdx+4x3exxdxxdx+6x3(exx)2dx6x4(exx)2dx132x3exxdx12x2exxdxxdx+22x2exxdx12log(x)x4(exx)2dx+12log(x)x4exxdx+12log(x)x5(exx)2dx(2log(x))x3exxdx+(2log(x2))x3(exx)2dx(2log(x2))x3exxdx(2log(x2))x4(exx)2dx+(6log(x2))x2exxdx=4x+12x4(exx)2dxxdx12x4exxdxxdx12x5(exx)2dxxdx+2x3exxdxxdx4x3(exx)2dxxdx+4x3exxdxxdx+4x4(exx)2dxxdx+6x3(exx)2dx6x4(exx)2dx132x3exxdx12x2exxdxxdx+22x2exxdx12log(x)x4(exx)2dx+12log(x)x4exxdx+12log(x)x5(exx)2dx(2log(x))x3exxdx+(2log(x2))x3(exx)2dx(2log(x2))x3exxdx(2log(x2))x4(exx)2dx+(6log(x2))x2exxdx

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 44, normalized size = 1.42 x(8ex+8x+12x2x3log(x)+4x2log(x2))2(exx)

Antiderivative was successfully verified.

[In]

Integrate[(-8*E^(2*x) - 8*x^2 - 32*x^3 + x^4 + E^x*(16*x + 44*x^2 - 13*x^3) + (3*x^4 + E^x*(-4*x^3 + x^4))*Log
[x] + (-8*x^3 + E^x*(12*x^2 - 4*x^3))*Log[x^2])/(2*E^(2*x) - 4*E^x*x + 2*x^2),x]

[Out]

(x*(-8*E^x + 8*x + 12*x^2 - x^3*Log[x] + 4*x^2*Log[x^2]))/(2*(E^x - x))

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 39, normalized size = 1.26 12x3+8x28xex(x48x3)log(x)2(xex)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-4*x^3+12*x^2)*exp(x)-8*x^3)*log(x^2)+((x^4-4*x^3)*exp(x)+3*x^4)*log(x)-8*exp(x)^2+(-13*x^3+44*x^
2+16*x)*exp(x)+x^4-32*x^3-8*x^2)/(2*exp(x)^2-4*exp(x)*x+2*x^2),x, algorithm="fricas")

[Out]

-1/2*(12*x^3 + 8*x^2 - 8*x*e^x - (x^4 - 8*x^3)*log(x))/(x - e^x)

________________________________________________________________________________________

giac [A]  time = 0.21, size = 39, normalized size = 1.26 x4log(x)8x3log(x)12x38x2+8xex2(xex)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-4*x^3+12*x^2)*exp(x)-8*x^3)*log(x^2)+((x^4-4*x^3)*exp(x)+3*x^4)*log(x)-8*exp(x)^2+(-13*x^3+44*x^
2+16*x)*exp(x)+x^4-32*x^3-8*x^2)/(2*exp(x)^2-4*exp(x)*x+2*x^2),x, algorithm="giac")

[Out]

1/2*(x^4*log(x) - 8*x^3*log(x) - 12*x^3 - 8*x^2 + 8*x*e^x)/(x - e^x)

________________________________________________________________________________________

maple [C]  time = 0.10, size = 102, normalized size = 3.29




method result size



risch (8+x)x3ln(x)2ex+2xx(iπx2csgn(ix)2csgn(ix2)2iπx2csgn(ix)csgn(ix2)2+iπx2csgn(ix2)36x24x+4ex)exx 102



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-4*x^3+12*x^2)*exp(x)-8*x^3)*ln(x^2)+((x^4-4*x^3)*exp(x)+3*x^4)*ln(x)-8*exp(x)^2+(-13*x^3+44*x^2+16*x)*
exp(x)+x^4-32*x^3-8*x^2)/(2*exp(x)^2-4*exp(x)*x+2*x^2),x,method=_RETURNVERBOSE)

[Out]

1/2*(-8+x)*x^3/(x-exp(x))*ln(x)-x*(I*Pi*x^2*csgn(I*x)^2*csgn(I*x^2)-2*I*Pi*x^2*csgn(I*x)*csgn(I*x^2)^2+I*Pi*x^
2*csgn(I*x^2)^3-6*x^2-4*x+4*exp(x))/(exp(x)-x)

________________________________________________________________________________________

maxima [A]  time = 0.51, size = 39, normalized size = 1.26 12x3+8x28xex(x48x3)log(x)2(xex)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-4*x^3+12*x^2)*exp(x)-8*x^3)*log(x^2)+((x^4-4*x^3)*exp(x)+3*x^4)*log(x)-8*exp(x)^2+(-13*x^3+44*x^
2+16*x)*exp(x)+x^4-32*x^3-8*x^2)/(2*exp(x)^2-4*exp(x)*x+2*x^2),x, algorithm="maxima")

[Out]

-1/2*(12*x^3 + 8*x^2 - 8*x*e^x - (x^4 - 8*x^3)*log(x))/(x - e^x)

________________________________________________________________________________________

mupad [B]  time = 2.42, size = 42, normalized size = 1.35 x(8x8exx3ln(x)+4x2ln(x2)+12x2)2(xex)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(8*exp(2*x) - log(x^2)*(exp(x)*(12*x^2 - 4*x^3) - 8*x^3) + 8*x^2 + 32*x^3 - x^4 - exp(x)*(16*x + 44*x^2 -
 13*x^3) + log(x)*(exp(x)*(4*x^3 - x^4) - 3*x^4))/(2*exp(2*x) - 4*x*exp(x) + 2*x^2),x)

[Out]

-(x*(8*x - 8*exp(x) - x^3*log(x) + 4*x^2*log(x^2) + 12*x^2))/(2*(x - exp(x)))

________________________________________________________________________________________

sympy [A]  time = 0.28, size = 31, normalized size = 1.00 4x+x4log(x)+8x3log(x)+12x32x+2ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-4*x**3+12*x**2)*exp(x)-8*x**3)*ln(x**2)+((x**4-4*x**3)*exp(x)+3*x**4)*ln(x)-8*exp(x)**2+(-13*x**
3+44*x**2+16*x)*exp(x)+x**4-32*x**3-8*x**2)/(2*exp(x)**2-4*exp(x)*x+2*x**2),x)

[Out]

-4*x + (-x**4*log(x) + 8*x**3*log(x) + 12*x**3)/(-2*x + 2*exp(x))

________________________________________________________________________________________