3.38.90
Optimal. Leaf size=31
________________________________________________________________________________________
Rubi [F] time = 2.83, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-8*E^(2*x) - 8*x^2 - 32*x^3 + x^4 + E^x*(16*x + 44*x^2 - 13*x^3) + (3*x^4 + E^x*(-4*x^3 + x^4))*Log[x] +
(-8*x^3 + E^x*(12*x^2 - 4*x^3))*Log[x^2])/(2*E^(2*x) - 4*E^x*x + 2*x^2),x]
[Out]
-4*x + 22*Defer[Int][x^2/(E^x - x), x] + 6*Log[x^2]*Defer[Int][x^2/(E^x - x), x] + 6*Defer[Int][x^3/(E^x - x)^
2, x] + 2*Log[x^2]*Defer[Int][x^3/(E^x - x)^2, x] - (13*Defer[Int][x^3/(E^x - x), x])/2 - 2*Log[x]*Defer[Int][
x^3/(E^x - x), x] - 2*Log[x^2]*Defer[Int][x^3/(E^x - x), x] - 6*Defer[Int][x^4/(E^x - x)^2, x] - (Log[x]*Defer
[Int][x^4/(E^x - x)^2, x])/2 - 2*Log[x^2]*Defer[Int][x^4/(E^x - x)^2, x] + (Log[x]*Defer[Int][x^4/(E^x - x), x
])/2 + (Log[x]*Defer[Int][x^5/(E^x - x)^2, x])/2 - 12*Defer[Int][Defer[Int][x^2/(E^x - x), x]/x, x] - 4*Defer[
Int][Defer[Int][x^3/(E^x - x)^2, x]/x, x] + 6*Defer[Int][Defer[Int][x^3/(E^x - x), x]/x, x] + (9*Defer[Int][De
fer[Int][x^4/(E^x - x)^2, x]/x, x])/2 - Defer[Int][Defer[Int][x^4/(E^x - x), x]/x, x]/2 - Defer[Int][Defer[Int
][x^5/(E^x - x)^2, x]/x, x]/2
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 44, normalized size = 1.42
Antiderivative was successfully verified.
[In]
Integrate[(-8*E^(2*x) - 8*x^2 - 32*x^3 + x^4 + E^x*(16*x + 44*x^2 - 13*x^3) + (3*x^4 + E^x*(-4*x^3 + x^4))*Log
[x] + (-8*x^3 + E^x*(12*x^2 - 4*x^3))*Log[x^2])/(2*E^(2*x) - 4*E^x*x + 2*x^2),x]
[Out]
(x*(-8*E^x + 8*x + 12*x^2 - x^3*Log[x] + 4*x^2*Log[x^2]))/(2*(E^x - x))
________________________________________________________________________________________
fricas [A] time = 0.57, size = 39, normalized size = 1.26
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-4*x^3+12*x^2)*exp(x)-8*x^3)*log(x^2)+((x^4-4*x^3)*exp(x)+3*x^4)*log(x)-8*exp(x)^2+(-13*x^3+44*x^
2+16*x)*exp(x)+x^4-32*x^3-8*x^2)/(2*exp(x)^2-4*exp(x)*x+2*x^2),x, algorithm="fricas")
[Out]
-1/2*(12*x^3 + 8*x^2 - 8*x*e^x - (x^4 - 8*x^3)*log(x))/(x - e^x)
________________________________________________________________________________________
giac [A] time = 0.21, size = 39, normalized size = 1.26
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-4*x^3+12*x^2)*exp(x)-8*x^3)*log(x^2)+((x^4-4*x^3)*exp(x)+3*x^4)*log(x)-8*exp(x)^2+(-13*x^3+44*x^
2+16*x)*exp(x)+x^4-32*x^3-8*x^2)/(2*exp(x)^2-4*exp(x)*x+2*x^2),x, algorithm="giac")
[Out]
1/2*(x^4*log(x) - 8*x^3*log(x) - 12*x^3 - 8*x^2 + 8*x*e^x)/(x - e^x)
________________________________________________________________________________________
maple [C] time = 0.10, size = 102, normalized size = 3.29
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((-4*x^3+12*x^2)*exp(x)-8*x^3)*ln(x^2)+((x^4-4*x^3)*exp(x)+3*x^4)*ln(x)-8*exp(x)^2+(-13*x^3+44*x^2+16*x)*
exp(x)+x^4-32*x^3-8*x^2)/(2*exp(x)^2-4*exp(x)*x+2*x^2),x,method=_RETURNVERBOSE)
[Out]
1/2*(-8+x)*x^3/(x-exp(x))*ln(x)-x*(I*Pi*x^2*csgn(I*x)^2*csgn(I*x^2)-2*I*Pi*x^2*csgn(I*x)*csgn(I*x^2)^2+I*Pi*x^
2*csgn(I*x^2)^3-6*x^2-4*x+4*exp(x))/(exp(x)-x)
________________________________________________________________________________________
maxima [A] time = 0.51, size = 39, normalized size = 1.26
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-4*x^3+12*x^2)*exp(x)-8*x^3)*log(x^2)+((x^4-4*x^3)*exp(x)+3*x^4)*log(x)-8*exp(x)^2+(-13*x^3+44*x^
2+16*x)*exp(x)+x^4-32*x^3-8*x^2)/(2*exp(x)^2-4*exp(x)*x+2*x^2),x, algorithm="maxima")
[Out]
-1/2*(12*x^3 + 8*x^2 - 8*x*e^x - (x^4 - 8*x^3)*log(x))/(x - e^x)
________________________________________________________________________________________
mupad [B] time = 2.42, size = 42, normalized size = 1.35
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(8*exp(2*x) - log(x^2)*(exp(x)*(12*x^2 - 4*x^3) - 8*x^3) + 8*x^2 + 32*x^3 - x^4 - exp(x)*(16*x + 44*x^2 -
13*x^3) + log(x)*(exp(x)*(4*x^3 - x^4) - 3*x^4))/(2*exp(2*x) - 4*x*exp(x) + 2*x^2),x)
[Out]
-(x*(8*x - 8*exp(x) - x^3*log(x) + 4*x^2*log(x^2) + 12*x^2))/(2*(x - exp(x)))
________________________________________________________________________________________
sympy [A] time = 0.28, size = 31, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-4*x**3+12*x**2)*exp(x)-8*x**3)*ln(x**2)+((x**4-4*x**3)*exp(x)+3*x**4)*ln(x)-8*exp(x)**2+(-13*x**
3+44*x**2+16*x)*exp(x)+x**4-32*x**3-8*x**2)/(2*exp(x)**2-4*exp(x)*x+2*x**2),x)
[Out]
-4*x + (-x**4*log(x) + 8*x**3*log(x) + 12*x**3)/(-2*x + 2*exp(x))
________________________________________________________________________________________