Optimal. Leaf size=31 \[ 2 x \left (-2+\frac {x^2 \left (3-\frac {1}{4} x \log (x)+\log \left (x^2\right )\right )}{e^x-x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.83, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8 e^{2 x}-8 x^2-32 x^3+x^4+e^x \left (16 x+44 x^2-13 x^3\right )+\left (3 x^4+e^x \left (-4 x^3+x^4\right )\right ) \log (x)+\left (-8 x^3+e^x \left (12 x^2-4 x^3\right )\right ) \log \left (x^2\right )}{2 e^{2 x}-4 e^x x+2 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-8 e^{2 x}-8 x^2-32 x^3+x^4+e^x \left (16 x+44 x^2-13 x^3\right )+\left (3 x^4+e^x \left (-4 x^3+x^4\right )\right ) \log (x)+\left (-8 x^3+e^x \left (12 x^2-4 x^3\right )\right ) \log \left (x^2\right )}{2 \left (e^x-x\right )^2} \, dx\\ &=\frac {1}{2} \int \frac {-8 e^{2 x}-8 x^2-32 x^3+x^4+e^x \left (16 x+44 x^2-13 x^3\right )+\left (3 x^4+e^x \left (-4 x^3+x^4\right )\right ) \log (x)+\left (-8 x^3+e^x \left (12 x^2-4 x^3\right )\right ) \log \left (x^2\right )}{\left (e^x-x\right )^2} \, dx\\ &=\frac {1}{2} \int \left (-8+\frac {(-1+x) x^3 \left (-12+x \log (x)-4 \log \left (x^2\right )\right )}{\left (e^x-x\right )^2}+\frac {x^2 \left (44-13 x-4 x \log (x)+x^2 \log (x)+12 \log \left (x^2\right )-4 x \log \left (x^2\right )\right )}{e^x-x}\right ) \, dx\\ &=-4 x+\frac {1}{2} \int \frac {(-1+x) x^3 \left (-12+x \log (x)-4 \log \left (x^2\right )\right )}{\left (e^x-x\right )^2} \, dx+\frac {1}{2} \int \frac {x^2 \left (44-13 x-4 x \log (x)+x^2 \log (x)+12 \log \left (x^2\right )-4 x \log \left (x^2\right )\right )}{e^x-x} \, dx\\ &=-4 x+\frac {1}{2} \int \left (-\frac {x^3 \left (-12+x \log (x)-4 \log \left (x^2\right )\right )}{\left (e^x-x\right )^2}+\frac {x^4 \left (-12+x \log (x)-4 \log \left (x^2\right )\right )}{\left (e^x-x\right )^2}\right ) \, dx+\frac {1}{2} \int \frac {x^2 \left (44-13 x+(-4+x) x \log (x)-4 (-3+x) \log \left (x^2\right )\right )}{e^x-x} \, dx\\ &=-4 x-\frac {1}{2} \int \frac {x^3 \left (-12+x \log (x)-4 \log \left (x^2\right )\right )}{\left (e^x-x\right )^2} \, dx+\frac {1}{2} \int \frac {x^4 \left (-12+x \log (x)-4 \log \left (x^2\right )\right )}{\left (e^x-x\right )^2} \, dx+\frac {1}{2} \int \left (\frac {44 x^2}{e^x-x}-\frac {13 x^3}{e^x-x}-\frac {4 x^3 \log (x)}{e^x-x}+\frac {x^4 \log (x)}{e^x-x}+\frac {12 x^2 \log \left (x^2\right )}{e^x-x}-\frac {4 x^3 \log \left (x^2\right )}{e^x-x}\right ) \, dx\\ &=-4 x+\frac {1}{2} \int \frac {x^4 \log (x)}{e^x-x} \, dx-\frac {1}{2} \int \left (-\frac {12 x^3}{\left (e^x-x\right )^2}+\frac {x^4 \log (x)}{\left (e^x-x\right )^2}-\frac {4 x^3 \log \left (x^2\right )}{\left (e^x-x\right )^2}\right ) \, dx+\frac {1}{2} \int \left (-\frac {12 x^4}{\left (e^x-x\right )^2}+\frac {x^5 \log (x)}{\left (e^x-x\right )^2}-\frac {4 x^4 \log \left (x^2\right )}{\left (e^x-x\right )^2}\right ) \, dx-2 \int \frac {x^3 \log (x)}{e^x-x} \, dx-2 \int \frac {x^3 \log \left (x^2\right )}{e^x-x} \, dx+6 \int \frac {x^2 \log \left (x^2\right )}{e^x-x} \, dx-\frac {13}{2} \int \frac {x^3}{e^x-x} \, dx+22 \int \frac {x^2}{e^x-x} \, dx\\ &=-4 x-\frac {1}{2} \int \frac {x^4 \log (x)}{\left (e^x-x\right )^2} \, dx+\frac {1}{2} \int \frac {x^5 \log (x)}{\left (e^x-x\right )^2} \, dx-\frac {1}{2} \int \frac {\int \frac {x^4}{e^x-x} \, dx}{x} \, dx+2 \int \frac {x^3 \log \left (x^2\right )}{\left (e^x-x\right )^2} \, dx-2 \int \frac {x^4 \log \left (x^2\right )}{\left (e^x-x\right )^2} \, dx+2 \int \frac {\int \frac {x^3}{e^x-x} \, dx}{x} \, dx+2 \int \frac {2 \int \frac {x^3}{e^x-x} \, dx}{x} \, dx+6 \int \frac {x^3}{\left (e^x-x\right )^2} \, dx-6 \int \frac {x^4}{\left (e^x-x\right )^2} \, dx-6 \int \frac {2 \int \frac {x^2}{e^x-x} \, dx}{x} \, dx-\frac {13}{2} \int \frac {x^3}{e^x-x} \, dx+22 \int \frac {x^2}{e^x-x} \, dx+\frac {1}{2} \log (x) \int \frac {x^4}{e^x-x} \, dx-(2 \log (x)) \int \frac {x^3}{e^x-x} \, dx-\left (2 \log \left (x^2\right )\right ) \int \frac {x^3}{e^x-x} \, dx+\left (6 \log \left (x^2\right )\right ) \int \frac {x^2}{e^x-x} \, dx\\ &=-4 x+\frac {1}{2} \int \frac {\int \frac {x^4}{\left (e^x-x\right )^2} \, dx}{x} \, dx-\frac {1}{2} \int \frac {\int \frac {x^4}{e^x-x} \, dx}{x} \, dx-\frac {1}{2} \int \frac {\int \frac {x^5}{\left (e^x-x\right )^2} \, dx}{x} \, dx-2 \int \frac {2 \int \frac {x^3}{\left (e^x-x\right )^2} \, dx}{x} \, dx+2 \int \frac {\int \frac {x^3}{e^x-x} \, dx}{x} \, dx+2 \int \frac {2 \int \frac {x^4}{\left (e^x-x\right )^2} \, dx}{x} \, dx+4 \int \frac {\int \frac {x^3}{e^x-x} \, dx}{x} \, dx+6 \int \frac {x^3}{\left (e^x-x\right )^2} \, dx-6 \int \frac {x^4}{\left (e^x-x\right )^2} \, dx-\frac {13}{2} \int \frac {x^3}{e^x-x} \, dx-12 \int \frac {\int \frac {x^2}{e^x-x} \, dx}{x} \, dx+22 \int \frac {x^2}{e^x-x} \, dx-\frac {1}{2} \log (x) \int \frac {x^4}{\left (e^x-x\right )^2} \, dx+\frac {1}{2} \log (x) \int \frac {x^4}{e^x-x} \, dx+\frac {1}{2} \log (x) \int \frac {x^5}{\left (e^x-x\right )^2} \, dx-(2 \log (x)) \int \frac {x^3}{e^x-x} \, dx+\left (2 \log \left (x^2\right )\right ) \int \frac {x^3}{\left (e^x-x\right )^2} \, dx-\left (2 \log \left (x^2\right )\right ) \int \frac {x^3}{e^x-x} \, dx-\left (2 \log \left (x^2\right )\right ) \int \frac {x^4}{\left (e^x-x\right )^2} \, dx+\left (6 \log \left (x^2\right )\right ) \int \frac {x^2}{e^x-x} \, dx\\ &=-4 x+\frac {1}{2} \int \frac {\int \frac {x^4}{\left (e^x-x\right )^2} \, dx}{x} \, dx-\frac {1}{2} \int \frac {\int \frac {x^4}{e^x-x} \, dx}{x} \, dx-\frac {1}{2} \int \frac {\int \frac {x^5}{\left (e^x-x\right )^2} \, dx}{x} \, dx+2 \int \frac {\int \frac {x^3}{e^x-x} \, dx}{x} \, dx-4 \int \frac {\int \frac {x^3}{\left (e^x-x\right )^2} \, dx}{x} \, dx+4 \int \frac {\int \frac {x^3}{e^x-x} \, dx}{x} \, dx+4 \int \frac {\int \frac {x^4}{\left (e^x-x\right )^2} \, dx}{x} \, dx+6 \int \frac {x^3}{\left (e^x-x\right )^2} \, dx-6 \int \frac {x^4}{\left (e^x-x\right )^2} \, dx-\frac {13}{2} \int \frac {x^3}{e^x-x} \, dx-12 \int \frac {\int \frac {x^2}{e^x-x} \, dx}{x} \, dx+22 \int \frac {x^2}{e^x-x} \, dx-\frac {1}{2} \log (x) \int \frac {x^4}{\left (e^x-x\right )^2} \, dx+\frac {1}{2} \log (x) \int \frac {x^4}{e^x-x} \, dx+\frac {1}{2} \log (x) \int \frac {x^5}{\left (e^x-x\right )^2} \, dx-(2 \log (x)) \int \frac {x^3}{e^x-x} \, dx+\left (2 \log \left (x^2\right )\right ) \int \frac {x^3}{\left (e^x-x\right )^2} \, dx-\left (2 \log \left (x^2\right )\right ) \int \frac {x^3}{e^x-x} \, dx-\left (2 \log \left (x^2\right )\right ) \int \frac {x^4}{\left (e^x-x\right )^2} \, dx+\left (6 \log \left (x^2\right )\right ) \int \frac {x^2}{e^x-x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 44, normalized size = 1.42 \begin {gather*} \frac {x \left (-8 e^x+8 x+12 x^2-x^3 \log (x)+4 x^2 \log \left (x^2\right )\right )}{2 \left (e^x-x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 39, normalized size = 1.26 \begin {gather*} -\frac {12 \, x^{3} + 8 \, x^{2} - 8 \, x e^{x} - {\left (x^{4} - 8 \, x^{3}\right )} \log \relax (x)}{2 \, {\left (x - e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 39, normalized size = 1.26 \begin {gather*} \frac {x^{4} \log \relax (x) - 8 \, x^{3} \log \relax (x) - 12 \, x^{3} - 8 \, x^{2} + 8 \, x e^{x}}{2 \, {\left (x - e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.10, size = 102, normalized size = 3.29
method | result | size |
risch | \(\frac {\left (-8+x \right ) x^{3} \ln \relax (x )}{-2 \,{\mathrm e}^{x}+2 x}-\frac {x \left (i \pi \,x^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 i \pi \,x^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+i \pi \,x^{2} \mathrm {csgn}\left (i x^{2}\right )^{3}-6 x^{2}-4 x +4 \,{\mathrm e}^{x}\right )}{{\mathrm e}^{x}-x}\) | \(102\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 39, normalized size = 1.26 \begin {gather*} -\frac {12 \, x^{3} + 8 \, x^{2} - 8 \, x e^{x} - {\left (x^{4} - 8 \, x^{3}\right )} \log \relax (x)}{2 \, {\left (x - e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.42, size = 42, normalized size = 1.35 \begin {gather*} -\frac {x\,\left (8\,x-8\,{\mathrm {e}}^x-x^3\,\ln \relax (x)+4\,x^2\,\ln \left (x^2\right )+12\,x^2\right )}{2\,\left (x-{\mathrm {e}}^x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 31, normalized size = 1.00 \begin {gather*} - 4 x + \frac {- x^{4} \log {\relax (x )} + 8 x^{3} \log {\relax (x )} + 12 x^{3}}{- 2 x + 2 e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________