Optimal. Leaf size=16 \[ \frac {16 x \left (4-e^9+x\right )}{\log (\log (4))} \]
________________________________________________________________________________________
Rubi [A] time = 0.00, antiderivative size = 19, normalized size of antiderivative = 1.19, number of steps used = 1, number of rules used = 1, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {9} \begin {gather*} \frac {4 \left (2 x-e^9+4\right )^2}{\log (\log (4))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 9
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {4 \left (4-e^9+2 x\right )^2}{\log (\log (4))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 21, normalized size = 1.31 \begin {gather*} -\frac {16 \left (-4 x+e^9 x-x^2\right )}{\log (\log (4))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 21, normalized size = 1.31 \begin {gather*} \frac {16 \, {\left (x^{2} - x e^{9} + 4 \, x\right )}}{\log \left (2 \, \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 21, normalized size = 1.31 \begin {gather*} \frac {16 \, {\left (x^{2} - x e^{9} + 4 \, x\right )}}{\log \left (2 \, \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 18, normalized size = 1.12
method | result | size |
gosper | \(-\frac {16 x \left (-x +{\mathrm e}^{9}-4\right )}{\ln \left (2 \ln \relax (2)\right )}\) | \(18\) |
default | \(\frac {-16 x \,{\mathrm e}^{9}+16 x^{2}+64 x}{\ln \left (2 \ln \relax (2)\right )}\) | \(23\) |
norman | \(\frac {16 x^{2}}{\ln \relax (2)+\ln \left (\ln \relax (2)\right )}-\frac {16 \left ({\mathrm e}^{9}-4\right ) x}{\ln \relax (2)+\ln \left (\ln \relax (2)\right )}\) | \(30\) |
risch | \(-\frac {16 x \,{\mathrm e}^{9}}{\ln \relax (2)+\ln \left (\ln \relax (2)\right )}+\frac {16 x^{2}}{\ln \relax (2)+\ln \left (\ln \relax (2)\right )}+\frac {64 x}{\ln \relax (2)+\ln \left (\ln \relax (2)\right )}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 21, normalized size = 1.31 \begin {gather*} \frac {16 \, {\left (x^{2} - x e^{9} + 4 \, x\right )}}{\log \left (2 \, \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.18, size = 18, normalized size = 1.12 \begin {gather*} \frac {{\left (32\,x-16\,{\mathrm {e}}^9+64\right )}^2}{64\,\ln \left (\ln \relax (4)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 29, normalized size = 1.81 \begin {gather*} \frac {16 x^{2}}{\log {\left (\log {\relax (2 )} \right )} + \log {\relax (2 )}} + \frac {x \left (64 - 16 e^{9}\right )}{\log {\left (\log {\relax (2 )} \right )} + \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________