Optimal. Leaf size=25 \[ \left (1-4 e^{e^x}\right ) x+\frac {x^2}{e^5+x}+\log (x) \]
________________________________________________________________________________________
Rubi [F] time = 1.07, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x^2+2 x^3+e^{10} (1+x)+e^5 \left (2 x+4 x^2\right )+e^{e^x} \left (-4 e^{10} x-8 e^5 x^2-4 x^3+e^x \left (-4 e^{10} x^2-8 e^5 x^3-4 x^4\right )\right )}{e^{10} x+2 e^5 x^2+x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^2+2 x^3+e^{10} (1+x)+e^5 \left (2 x+4 x^2\right )+e^{e^x} \left (-4 e^{10} x-8 e^5 x^2-4 x^3+e^x \left (-4 e^{10} x^2-8 e^5 x^3-4 x^4\right )\right )}{x \left (e^{10}+2 e^5 x+x^2\right )} \, dx\\ &=\int \frac {x^2+2 x^3+e^{10} (1+x)+e^5 \left (2 x+4 x^2\right )+e^{e^x} \left (-4 e^{10} x-8 e^5 x^2-4 x^3+e^x \left (-4 e^{10} x^2-8 e^5 x^3-4 x^4\right )\right )}{x \left (e^5+x\right )^2} \, dx\\ &=\int \frac {x^2+2 x^3+e^{10} (1+x)+2 e^5 x (1+2 x)-4 e^{e^x} x \left (e^5+x\right )^2 \left (1+e^x x\right )}{x \left (e^5+x\right )^2} \, dx\\ &=\int \left (-4 e^{e^x}-4 e^{e^x+x} x+\frac {x}{\left (e^5+x\right )^2}+\frac {2 x^2}{\left (e^5+x\right )^2}+\frac {e^{10} (1+x)}{x \left (e^5+x\right )^2}+\frac {2 e^5 (1+2 x)}{\left (e^5+x\right )^2}\right ) \, dx\\ &=2 \int \frac {x^2}{\left (e^5+x\right )^2} \, dx-4 \int e^{e^x} \, dx-4 \int e^{e^x+x} x \, dx+\left (2 e^5\right ) \int \frac {1+2 x}{\left (e^5+x\right )^2} \, dx+e^{10} \int \frac {1+x}{x \left (e^5+x\right )^2} \, dx+\int \frac {x}{\left (e^5+x\right )^2} \, dx\\ &=2 \int \left (1+\frac {e^{10}}{\left (e^5+x\right )^2}-\frac {2 e^5}{e^5+x}\right ) \, dx-4 \int e^{e^x+x} x \, dx-4 \operatorname {Subst}\left (\int \frac {e^x}{x} \, dx,x,e^x\right )+\left (2 e^5\right ) \int \left (\frac {1-2 e^5}{\left (e^5+x\right )^2}+\frac {2}{e^5+x}\right ) \, dx+e^{10} \int \left (\frac {1}{e^{10} x}+\frac {-1+e^5}{e^5 \left (e^5+x\right )^2}-\frac {1}{e^{10} \left (e^5+x\right )}\right ) \, dx+\int \left (-\frac {e^5}{\left (e^5+x\right )^2}+\frac {1}{e^5+x}\right ) \, dx\\ &=2 x+\frac {e^5}{e^5+x}-\frac {2 e^{10}}{e^5+x}-\frac {2 e^5 \left (1-2 e^5\right )}{e^5+x}+\frac {e^5 \left (1-e^5\right )}{e^5+x}-4 \text {Ei}\left (e^x\right )+\log (x)-4 \int e^{e^x+x} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 25, normalized size = 1.00 \begin {gather*} 2 x-4 e^{e^x} x+\frac {e^{10}}{e^5+x}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 40, normalized size = 1.60 \begin {gather*} \frac {2 \, x^{2} + 2 \, x e^{5} - 4 \, {\left (x^{2} + x e^{5}\right )} e^{\left (e^{x}\right )} + {\left (x + e^{5}\right )} \log \relax (x) + e^{10}}{x + e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 68, normalized size = 2.72 \begin {gather*} -\frac {4 \, x^{2} e^{\left (x + e^{x}\right )} - 2 \, x^{2} e^{x} - x e^{x} \log \relax (x) + 4 \, x e^{\left (x + e^{x} + 5\right )} - 2 \, x e^{\left (x + 5\right )} - e^{\left (x + 5\right )} \log \relax (x) - e^{\left (x + 10\right )}}{x e^{x} + e^{\left (x + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 22, normalized size = 0.88
method | result | size |
risch | \(2 x +\frac {{\mathrm e}^{10}}{{\mathrm e}^{5}+x}+\ln \relax (x )-4 x \,{\mathrm e}^{{\mathrm e}^{x}}\) | \(22\) |
norman | \(\frac {2 x^{2}-4 \,{\mathrm e}^{{\mathrm e}^{x}} x^{2}-4 x \,{\mathrm e}^{5} {\mathrm e}^{{\mathrm e}^{x}}-{\mathrm e}^{10}}{{\mathrm e}^{5}+x}+\ln \relax (x )\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 93, normalized size = 3.72 \begin {gather*} -{\left (e^{\left (-10\right )} \log \left (x + e^{5}\right ) - e^{\left (-10\right )} \log \relax (x) - \frac {1}{x e^{5} + e^{10}}\right )} e^{10} + 4 \, {\left (\frac {e^{5}}{x + e^{5}} + \log \left (x + e^{5}\right )\right )} e^{5} - 4 \, x e^{\left (e^{x}\right )} - 4 \, e^{5} \log \left (x + e^{5}\right ) + 2 \, x - \frac {3 \, e^{10}}{x + e^{5}} - \frac {e^{5}}{x + e^{5}} + \log \left (x + e^{5}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.58, size = 21, normalized size = 0.84 \begin {gather*} 2\,x+\ln \relax (x)-4\,x\,{\mathrm {e}}^{{\mathrm {e}}^x}+\frac {{\mathrm {e}}^{10}}{x+{\mathrm {e}}^5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 22, normalized size = 0.88 \begin {gather*} - 4 x e^{e^{x}} + 2 x + \log {\relax (x )} + \frac {e^{10}}{x + e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________