Optimal. Leaf size=27 \[ 4 \left (-e^{\frac {1}{x}}+(8-x) \left (e^x-x\right )\right )^2+x \]
________________________________________________________________________________________
Rubi [F] time = 1.77, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8 e^{2/x}+x^2+512 x^3-192 x^4+16 x^5+e^{\frac {1}{x}} \left (-64 x+72 x^2-16 x^3\right )+e^{2 x} \left (448 x^2-120 x^3+8 x^4\right )+e^x \left (-512 x^2-256 x^3+104 x^4-8 x^5+e^{\frac {1}{x}} \left (64-8 x-56 x^2+8 x^3\right )\right )}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (8 e^{2 x} (-8+x) (-7+x)-\frac {8 e^x \left (-8 e^{\frac {1}{x}}+e^{\frac {1}{x}} x+64 x^2+7 e^{\frac {1}{x}} x^2+32 x^3-e^{\frac {1}{x}} x^3-13 x^4+x^5\right )}{x^2}+\frac {-8 e^{2/x}-64 e^{\frac {1}{x}} x+x^2+72 e^{\frac {1}{x}} x^2+512 x^3-16 e^{\frac {1}{x}} x^3-192 x^4+16 x^5}{x^2}\right ) \, dx\\ &=8 \int e^{2 x} (-8+x) (-7+x) \, dx-8 \int \frac {e^x \left (-8 e^{\frac {1}{x}}+e^{\frac {1}{x}} x+64 x^2+7 e^{\frac {1}{x}} x^2+32 x^3-e^{\frac {1}{x}} x^3-13 x^4+x^5\right )}{x^2} \, dx+\int \frac {-8 e^{2/x}-64 e^{\frac {1}{x}} x+x^2+72 e^{\frac {1}{x}} x^2+512 x^3-16 e^{\frac {1}{x}} x^3-192 x^4+16 x^5}{x^2} \, dx\\ &=8 \int \left (56 e^{2 x}-15 e^{2 x} x+e^{2 x} x^2\right ) \, dx-8 \int e^x \left (64+e^{\frac {1}{x}} \left (7-\frac {8}{x^2}+\frac {1}{x}-x\right )+32 x-13 x^2+x^3\right ) \, dx+\int \left (1-\frac {8 e^{2/x}}{x^2}+512 x-192 x^2+16 x^3-\frac {8 e^{\frac {1}{x}} \left (8-9 x+2 x^2\right )}{x}\right ) \, dx\\ &=x+256 x^2-64 x^3+4 x^4-8 \int \frac {e^{2/x}}{x^2} \, dx+8 \int e^{2 x} x^2 \, dx-8 \int \frac {e^{\frac {1}{x}} \left (8-9 x+2 x^2\right )}{x} \, dx-8 \int \left (64 e^x+32 e^x x-13 e^x x^2+e^x x^3-\frac {e^{\frac {1}{x}+x} \left (8-x-7 x^2+x^3\right )}{x^2}\right ) \, dx-120 \int e^{2 x} x \, dx+448 \int e^{2 x} \, dx\\ &=4 e^{2/x}+224 e^{2 x}+x-60 e^{2 x} x+256 x^2+4 e^{2 x} x^2-64 x^3+4 x^4-8 \int e^{2 x} x \, dx-8 \int e^x x^3 \, dx-8 \int \left (-9 e^{\frac {1}{x}}+\frac {8 e^{\frac {1}{x}}}{x}+2 e^{\frac {1}{x}} x\right ) \, dx+8 \int \frac {e^{\frac {1}{x}+x} \left (8-x-7 x^2+x^3\right )}{x^2} \, dx+60 \int e^{2 x} \, dx+104 \int e^x x^2 \, dx-256 \int e^x x \, dx-512 \int e^x \, dx\\ &=4 e^{2/x}-512 e^x+254 e^{2 x}+x-256 e^x x-64 e^{2 x} x+256 x^2+104 e^x x^2+4 e^{2 x} x^2-64 x^3-8 e^x x^3+4 x^4+4 \int e^{2 x} \, dx+8 \int \left (-7 e^{\frac {1}{x}+x}+\frac {8 e^{\frac {1}{x}+x}}{x^2}-\frac {e^{\frac {1}{x}+x}}{x}+e^{\frac {1}{x}+x} x\right ) \, dx-16 \int e^{\frac {1}{x}} x \, dx+24 \int e^x x^2 \, dx-64 \int \frac {e^{\frac {1}{x}}}{x} \, dx+72 \int e^{\frac {1}{x}} \, dx-208 \int e^x x \, dx+256 \int e^x \, dx\\ &=4 e^{2/x}-256 e^x+256 e^{2 x}+x+72 e^{\frac {1}{x}} x-464 e^x x-64 e^{2 x} x+256 x^2-8 e^{\frac {1}{x}} x^2+128 e^x x^2+4 e^{2 x} x^2-64 x^3-8 e^x x^3+4 x^4+64 \text {Ei}\left (\frac {1}{x}\right )-8 \int e^{\frac {1}{x}} \, dx-8 \int \frac {e^{\frac {1}{x}+x}}{x} \, dx+8 \int e^{\frac {1}{x}+x} x \, dx-48 \int e^x x \, dx-56 \int e^{\frac {1}{x}+x} \, dx+64 \int \frac {e^{\frac {1}{x}+x}}{x^2} \, dx+72 \int \frac {e^{\frac {1}{x}}}{x} \, dx+208 \int e^x \, dx\\ &=4 e^{2/x}-48 e^x+256 e^{2 x}+x+64 e^{\frac {1}{x}} x-512 e^x x-64 e^{2 x} x+256 x^2-8 e^{\frac {1}{x}} x^2+128 e^x x^2+4 e^{2 x} x^2-64 x^3-8 e^x x^3+4 x^4-8 \text {Ei}\left (\frac {1}{x}\right )-8 \int \frac {e^{\frac {1}{x}}}{x} \, dx-8 \int \frac {e^{\frac {1}{x}+x}}{x} \, dx+8 \int e^{\frac {1}{x}+x} x \, dx+48 \int e^x \, dx-56 \int e^{\frac {1}{x}+x} \, dx+64 \int \frac {e^{\frac {1}{x}+x}}{x^2} \, dx\\ &=4 e^{2/x}+256 e^{2 x}+x+64 e^{\frac {1}{x}} x-512 e^x x-64 e^{2 x} x+256 x^2-8 e^{\frac {1}{x}} x^2+128 e^x x^2+4 e^{2 x} x^2-64 x^3-8 e^x x^3+4 x^4-8 \int \frac {e^{\frac {1}{x}+x}}{x} \, dx+8 \int e^{\frac {1}{x}+x} x \, dx-56 \int e^{\frac {1}{x}+x} \, dx+64 \int \frac {e^{\frac {1}{x}+x}}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.18, size = 88, normalized size = 3.26 \begin {gather*} 4 e^{2/x}+8 e^{\frac {1}{x}+x} (-8+x)+x+256 x^2-64 x^3+4 x^4+8 e^{2 x} \left (32-8 x+\frac {x^2}{2}\right )-8 e^{\frac {1}{x}} \left (-8 x+x^2\right )-8 e^x \left (64 x-16 x^2+x^3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.18, size = 77, normalized size = 2.85 \begin {gather*} 4 \, x^{4} - 64 \, x^{3} + 256 \, x^{2} + 4 \, {\left (x^{2} - 16 \, x + 64\right )} e^{\left (2 \, x\right )} - 8 \, {\left (x^{3} - 16 \, x^{2} - {\left (x - 8\right )} e^{\frac {1}{x}} + 64 \, x\right )} e^{x} - 8 \, {\left (x^{2} - 8 \, x\right )} e^{\frac {1}{x}} + x + 4 \, e^{\frac {2}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 107, normalized size = 3.96 \begin {gather*} 4 \, x^{4} - 8 \, x^{3} e^{x} - 64 \, x^{3} + 4 \, x^{2} e^{\left (2 \, x\right )} + 128 \, x^{2} e^{x} - 8 \, x^{2} e^{\frac {1}{x}} + 256 \, x^{2} - 64 \, x e^{\left (2 \, x\right )} - 512 \, x e^{x} + 8 \, x e^{\left (\frac {x^{2} + 1}{x}\right )} + 64 \, x e^{\frac {1}{x}} + x + 256 \, e^{\left (2 \, x\right )} - 64 \, e^{\left (\frac {x^{2} + 1}{x}\right )} + 4 \, e^{\frac {2}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.14, size = 81, normalized size = 3.00
method | result | size |
risch | \(4 x^{4}-64 x^{3}+256 x^{2}+x +\left (4 x^{2}-64 x +256\right ) {\mathrm e}^{2 x}+\left (-8 x^{3}+128 x^{2}-512 x \right ) {\mathrm e}^{x}+4 \,{\mathrm e}^{\frac {2}{x}}+\left (-8 x^{2}+8 \,{\mathrm e}^{x} x +64 x -64 \,{\mathrm e}^{x}\right ) {\mathrm e}^{\frac {1}{x}}\) | \(81\) |
derivativedivides | \(4 x^{4}-64 x^{3}+256 x^{2}+x +4 \,{\mathrm e}^{\frac {2}{x}}+4 \,{\mathrm e}^{2 x} x^{2}-64 x \,{\mathrm e}^{2 x}+256 \,{\mathrm e}^{2 x}-8 x^{2} {\mathrm e}^{\frac {1}{x}}+64 x \,{\mathrm e}^{\frac {1}{x}}+\left (\frac {128 \,{\mathrm e}^{x}}{x^{2}}-\frac {512 \,{\mathrm e}^{x}}{x^{3}}-\frac {8 \,{\mathrm e}^{x}}{x}+\frac {8 \,{\mathrm e}^{\frac {1}{x}} {\mathrm e}^{x}}{x^{3}}-\frac {64 \,{\mathrm e}^{\frac {1}{x}} {\mathrm e}^{x}}{x^{4}}\right ) x^{4}\) | \(112\) |
default | \(4 x^{4}-64 x^{3}+256 x^{2}+x +4 \,{\mathrm e}^{\frac {2}{x}}+4 \,{\mathrm e}^{2 x} x^{2}-64 x \,{\mathrm e}^{2 x}+256 \,{\mathrm e}^{2 x}-8 x^{2} {\mathrm e}^{\frac {1}{x}}+64 x \,{\mathrm e}^{\frac {1}{x}}+\left (\frac {128 \,{\mathrm e}^{x}}{x^{2}}-\frac {512 \,{\mathrm e}^{x}}{x^{3}}-\frac {8 \,{\mathrm e}^{x}}{x}+\frac {8 \,{\mathrm e}^{\frac {1}{x}} {\mathrm e}^{x}}{x^{3}}-\frac {64 \,{\mathrm e}^{\frac {1}{x}} {\mathrm e}^{x}}{x^{4}}\right ) x^{4}\) | \(112\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.45, size = 133, normalized size = 4.93 \begin {gather*} 4 \, x^{4} - 64 \, x^{3} + 256 \, x^{2} + 2 \, {\left (2 \, x^{2} - 2 \, x + 1\right )} e^{\left (2 \, x\right )} - 30 \, {\left (2 \, x - 1\right )} e^{\left (2 \, x\right )} + 8 \, {\left (x - 8\right )} e^{\left (x + \frac {1}{x}\right )} - 8 \, {\left (x^{3} - 3 \, x^{2} + 6 \, x - 6\right )} e^{x} + 104 \, {\left (x^{2} - 2 \, x + 2\right )} e^{x} - 256 \, {\left (x - 1\right )} e^{x} + x + 64 \, {\rm Ei}\left (\frac {1}{x}\right ) + 224 \, e^{\left (2 \, x\right )} - 512 \, e^{x} + 4 \, e^{\frac {2}{x}} - 72 \, \Gamma \left (-1, -\frac {1}{x}\right ) - 16 \, \Gamma \left (-2, -\frac {1}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.75, size = 66, normalized size = 2.44 \begin {gather*} x+4\,{\mathrm {e}}^{2/x}+4\,{\mathrm {e}}^{2\,x}\,{\left (x-8\right )}^2+256\,x^2-64\,x^3+4\,x^4+8\,{\mathrm {e}}^x\,\left (x-8\right )\,\left (8\,x+{\mathrm {e}}^{1/x}-x^2\right )-8\,x\,{\mathrm {e}}^{1/x}\,\left (x-8\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 8.92, size = 83, normalized size = 3.07 \begin {gather*} 4 x^{4} - 64 x^{3} + 256 x^{2} + x + \left (- 8 x^{2} + 64 x\right ) e^{\frac {1}{x}} + \left (4 x^{2} - 64 x + 256\right ) e^{2 x} + \left (- 8 x^{3} + 128 x^{2} + 8 x e^{\frac {1}{x}} - 512 x - 64 e^{\frac {1}{x}}\right ) e^{x} + 4 e^{\frac {2}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________