Optimal. Leaf size=23 \[ \frac {-\frac {23}{3}-\frac {4}{e^4}+\log (10)}{x \log (x \log (\log (2)))} \]
________________________________________________________________________________________
Rubi [C] time = 0.21, antiderivative size = 190, normalized size of antiderivative = 8.26, number of steps used = 8, number of rules used = 7, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.132, Rules used = {12, 2306, 2309, 2178, 2366, 14, 6482} \begin {gather*} \frac {\left (12+e^4 (23-3 \log (10))\right ) \log (\log (2)) \log (x \log (\log (2))) \text {Ei}(-\log (x \log (\log (2))))}{3 e^4}-\frac {\log (\log (2)) \left (\left (12+e^4 (23-3 \log (10))\right ) \log (x \log (\log (2)))+12+e^4 (23-3 \log (10))\right ) \text {Ei}(-\log (x \log (\log (2))))}{3 e^4}+\frac {\left (12+e^4 (23-3 \log (10))\right ) \log (\log (2)) \text {Ei}(-\log (x \log (\log (2))))}{3 e^4}-\frac {\left (12+e^4 (23-3 \log (10))\right ) \log (x \log (\log (2)))+12+e^4 (23-3 \log (10))}{3 e^4 x \log (x \log (\log (2)))}+\frac {12+e^4 (23-\log (1000))}{3 e^4 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2178
Rule 2306
Rule 2309
Rule 2366
Rule 6482
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {12+23 e^4-3 e^4 \log (10)+\left (12+23 e^4-3 e^4 \log (10)\right ) \log (x \log (\log (2)))}{x^2 \log ^2(x \log (\log (2)))} \, dx}{3 e^4}\\ &=-\frac {\text {Ei}(-\log (x \log (\log (2)))) \log (\log (2)) \left (12+e^4 (23-3 \log (10))+\left (12+e^4 (23-3 \log (10))\right ) \log (x \log (\log (2)))\right )}{3 e^4}-\frac {12+e^4 (23-3 \log (10))+\left (12+e^4 (23-3 \log (10))\right ) \log (x \log (\log (2)))}{3 e^4 x \log (x \log (\log (2)))}-\frac {\left (12+e^4 (23-3 \log (10))\right ) \int \frac {-x \text {Ei}(-\log (x \log (\log (2)))) \log (\log (2))-\frac {1}{\log (x \log (\log (2)))}}{x^2} \, dx}{3 e^4}\\ &=-\frac {\text {Ei}(-\log (x \log (\log (2)))) \log (\log (2)) \left (12+e^4 (23-3 \log (10))+\left (12+e^4 (23-3 \log (10))\right ) \log (x \log (\log (2)))\right )}{3 e^4}-\frac {12+e^4 (23-3 \log (10))+\left (12+e^4 (23-3 \log (10))\right ) \log (x \log (\log (2)))}{3 e^4 x \log (x \log (\log (2)))}-\frac {\left (12+e^4 (23-3 \log (10))\right ) \int \left (-\frac {\text {Ei}(-\log (x \log (\log (2)))) \log (\log (2))}{x}-\frac {1}{x^2 \log (x \log (\log (2)))}\right ) \, dx}{3 e^4}\\ &=-\frac {\text {Ei}(-\log (x \log (\log (2)))) \log (\log (2)) \left (12+e^4 (23-3 \log (10))+\left (12+e^4 (23-3 \log (10))\right ) \log (x \log (\log (2)))\right )}{3 e^4}-\frac {12+e^4 (23-3 \log (10))+\left (12+e^4 (23-3 \log (10))\right ) \log (x \log (\log (2)))}{3 e^4 x \log (x \log (\log (2)))}+\frac {\left (12+e^4 (23-3 \log (10))\right ) \int \frac {1}{x^2 \log (x \log (\log (2)))} \, dx}{3 e^4}+\frac {\left (\left (12+e^4 (23-3 \log (10))\right ) \log (\log (2))\right ) \int \frac {\text {Ei}(-\log (x \log (\log (2))))}{x} \, dx}{3 e^4}\\ &=-\frac {\text {Ei}(-\log (x \log (\log (2)))) \log (\log (2)) \left (12+e^4 (23-3 \log (10))+\left (12+e^4 (23-3 \log (10))\right ) \log (x \log (\log (2)))\right )}{3 e^4}-\frac {12+e^4 (23-3 \log (10))+\left (12+e^4 (23-3 \log (10))\right ) \log (x \log (\log (2)))}{3 e^4 x \log (x \log (\log (2)))}+\frac {\left (\left (12+e^4 (23-3 \log (10))\right ) \log (\log (2))\right ) \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (x \log (\log (2)))\right )}{3 e^4}+\frac {\left (\left (12+e^4 (23-3 \log (10))\right ) \log (\log (2))\right ) \operatorname {Subst}(\int \text {Ei}(-x) \, dx,x,\log (x \log (\log (2))))}{3 e^4}\\ &=\frac {12+e^4 (23-3 \log (10))}{3 e^4 x}+\frac {\text {Ei}(-\log (x \log (\log (2)))) \left (12+e^4 (23-3 \log (10))\right ) \log (\log (2))}{3 e^4}+\frac {\text {Ei}(-\log (x \log (\log (2)))) \left (12+e^4 (23-3 \log (10))\right ) \log (\log (2)) \log (x \log (\log (2)))}{3 e^4}-\frac {\text {Ei}(-\log (x \log (\log (2)))) \log (\log (2)) \left (12+e^4 (23-3 \log (10))+\left (12+e^4 (23-3 \log (10))\right ) \log (x \log (\log (2)))\right )}{3 e^4}-\frac {12+e^4 (23-3 \log (10))+\left (12+e^4 (23-3 \log (10))\right ) \log (x \log (\log (2)))}{3 e^4 x \log (x \log (\log (2)))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 28, normalized size = 1.22 \begin {gather*} \frac {-12+e^4 (-23+\log (1000))}{3 e^4 x \log (x \log (\log (2)))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 27, normalized size = 1.17 \begin {gather*} \frac {{\left (3 \, e^{4} \log \left (10\right ) - 23 \, e^{4} - 12\right )} e^{\left (-4\right )}}{3 \, x \log \left (x \log \left (\log \relax (2)\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 33, normalized size = 1.43 \begin {gather*} \frac {{\left (3 \, e^{4} \log \relax (5) + 3 \, e^{4} \log \relax (2) - 23 \, e^{4} - 12\right )} e^{\left (-4\right )}}{3 \, x \log \left (x \log \left (\log \relax (2)\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 30, normalized size = 1.30
method | result | size |
norman | \(\frac {{\mathrm e}^{-4} \left (3 \,{\mathrm e}^{4} \ln \left (10\right )-23 \,{\mathrm e}^{4}-12\right )}{3 x \ln \left (x \ln \left (\ln \relax (2)\right )\right )}\) | \(30\) |
risch | \(\frac {{\mathrm e}^{-4} \left (3 \,{\mathrm e}^{4} \ln \relax (5)+3 \,{\mathrm e}^{4} \ln \relax (2)-23 \,{\mathrm e}^{4}-12\right )}{3 x \ln \left (x \ln \left (\ln \relax (2)\right )\right )}\) | \(34\) |
derivativedivides | \(\frac {\ln \left (\ln \relax (2)\right ) {\mathrm e}^{-4} \left (3 \,{\mathrm e}^{4} \ln \left (10\right ) \expIntegralEi \left (1, \ln \left (x \ln \left (\ln \relax (2)\right )\right )\right )-3 \,{\mathrm e}^{4} \ln \left (10\right ) \left (-\frac {1}{x \ln \left (\ln \relax (2)\right ) \ln \left (x \ln \left (\ln \relax (2)\right )\right )}+\expIntegralEi \left (1, \ln \left (x \ln \left (\ln \relax (2)\right )\right )\right )\right )-23 \,{\mathrm e}^{4} \expIntegralEi \left (1, \ln \left (x \ln \left (\ln \relax (2)\right )\right )\right )+23 \,{\mathrm e}^{4} \left (-\frac {1}{x \ln \left (\ln \relax (2)\right ) \ln \left (x \ln \left (\ln \relax (2)\right )\right )}+\expIntegralEi \left (1, \ln \left (x \ln \left (\ln \relax (2)\right )\right )\right )\right )-\frac {12}{x \ln \left (\ln \relax (2)\right ) \ln \left (x \ln \left (\ln \relax (2)\right )\right )}\right )}{3}\) | \(119\) |
default | \(\frac {\ln \left (\ln \relax (2)\right ) {\mathrm e}^{-4} \left (3 \,{\mathrm e}^{4} \ln \left (10\right ) \expIntegralEi \left (1, \ln \left (x \ln \left (\ln \relax (2)\right )\right )\right )-3 \,{\mathrm e}^{4} \ln \left (10\right ) \left (-\frac {1}{x \ln \left (\ln \relax (2)\right ) \ln \left (x \ln \left (\ln \relax (2)\right )\right )}+\expIntegralEi \left (1, \ln \left (x \ln \left (\ln \relax (2)\right )\right )\right )\right )-23 \,{\mathrm e}^{4} \expIntegralEi \left (1, \ln \left (x \ln \left (\ln \relax (2)\right )\right )\right )+23 \,{\mathrm e}^{4} \left (-\frac {1}{x \ln \left (\ln \relax (2)\right ) \ln \left (x \ln \left (\ln \relax (2)\right )\right )}+\expIntegralEi \left (1, \ln \left (x \ln \left (\ln \relax (2)\right )\right )\right )\right )-\frac {12}{x \ln \left (\ln \relax (2)\right ) \ln \left (x \ln \left (\ln \relax (2)\right )\right )}\right )}{3}\) | \(119\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.40, size = 83, normalized size = 3.61 \begin {gather*} -\frac {1}{3} \, {\left (3 \, {\rm Ei}\left (-\log \left (x \log \left (\log \relax (2)\right )\right )\right ) e^{4} \log \left (10\right ) - 3 \, e^{4} \Gamma \left (-1, \log \left (x \log \left (\log \relax (2)\right )\right )\right ) \log \left (10\right ) - 23 \, {\rm Ei}\left (-\log \left (x \log \left (\log \relax (2)\right )\right )\right ) e^{4} + 23 \, e^{4} \Gamma \left (-1, \log \left (x \log \left (\log \relax (2)\right )\right )\right ) - 12 \, {\rm Ei}\left (-\log \left (x \log \left (\log \relax (2)\right )\right )\right ) + 12 \, \Gamma \left (-1, \log \left (x \log \left (\log \relax (2)\right )\right )\right )\right )} e^{\left (-4\right )} \log \left (\log \relax (2)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.30, size = 23, normalized size = 1.00 \begin {gather*} -\frac {4\,{\mathrm {e}}^{-4}-\ln \left (10\right )+\frac {23}{3}}{x\,\ln \left (x\,\ln \left (\ln \relax (2)\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 29, normalized size = 1.26 \begin {gather*} \frac {- 23 e^{4} - 12 + 3 e^{4} \log {\left (10 \right )}}{3 x e^{4} \log {\left (x \log {\left (\log {\relax (2 )} \right )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________