Optimal. Leaf size=25 \[ 3-e^{\frac {e^4 \left (x+\frac {2+x}{x}\right )^2}{x^2}}+x \]
________________________________________________________________________________________
Rubi [A] time = 0.29, antiderivative size = 21, normalized size of antiderivative = 0.84, number of steps used = 3, number of rules used = 2, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {14, 6706} \begin {gather*} x-e^{\frac {e^4 \left (x^2+x+2\right )^2}{x^4}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+\frac {2 e^{4+\frac {e^4 \left (2+x+x^2\right )^2}{x^4}} (4+x) \left (2+x+x^2\right )}{x^5}\right ) \, dx\\ &=x+2 \int \frac {e^{4+\frac {e^4 \left (2+x+x^2\right )^2}{x^4}} (4+x) \left (2+x+x^2\right )}{x^5} \, dx\\ &=-e^{\frac {e^4 \left (2+x+x^2\right )^2}{x^4}}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 21, normalized size = 0.84 \begin {gather*} -e^{\frac {e^4 \left (2+x+x^2\right )^2}{x^4}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 42, normalized size = 1.68 \begin {gather*} {\left (x e^{4} - e^{\left (\frac {4 \, x^{4} + {\left (x^{4} + 2 \, x^{3} + 5 \, x^{2} + 4 \, x + 4\right )} e^{4}}{x^{4}}\right )}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 36, normalized size = 1.44 \begin {gather*} x - e^{\left (\frac {2 \, e^{4}}{x} + \frac {5 \, e^{4}}{x^{2}} + \frac {4 \, e^{4}}{x^{3}} + \frac {4 \, e^{4}}{x^{4}} + e^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 20, normalized size = 0.80
method | result | size |
risch | \(x -{\mathrm e}^{\frac {\left (x^{2}+x +2\right )^{2} {\mathrm e}^{4}}{x^{4}}}\) | \(20\) |
norman | \(\frac {x^{5}-x^{4} {\mathrm e}^{\frac {\left (x^{4}+2 x^{3}+5 x^{2}+4 x +4\right ) {\mathrm e}^{4}}{x^{4}}}}{x^{4}}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.60, size = 36, normalized size = 1.44 \begin {gather*} x - e^{\left (\frac {2 \, e^{4}}{x} + \frac {5 \, e^{4}}{x^{2}} + \frac {4 \, e^{4}}{x^{3}} + \frac {4 \, e^{4}}{x^{4}} + e^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.04, size = 39, normalized size = 1.56 \begin {gather*} x-{\mathrm {e}}^{\frac {2\,{\mathrm {e}}^4}{x}}\,{\mathrm {e}}^{\frac {5\,{\mathrm {e}}^4}{x^2}}\,{\mathrm {e}}^{\frac {4\,{\mathrm {e}}^4}{x^3}}\,{\mathrm {e}}^{\frac {4\,{\mathrm {e}}^4}{x^4}}\,{\mathrm {e}}^{{\mathrm {e}}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 27, normalized size = 1.08 \begin {gather*} x - e^{\frac {\left (x^{4} + 2 x^{3} + 5 x^{2} + 4 x + 4\right ) e^{4}}{x^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________