Optimal. Leaf size=28 \[ 3+\frac {e^{x-x^6}+x}{4 \left (25+\frac {e^x}{2}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.97, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {50+e^{x-x^6} \left (50-300 x^5\right )+e^x \left (1-x-6 e^{x-x^6} x^5\right )}{5000+200 e^x+2 e^{2 x}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {50+e^{x-x^6} \left (50-300 x^5\right )+e^x \left (1-x-6 e^{x-x^6} x^5\right )}{2 \left (50+e^x\right )^2} \, dx\\ &=\frac {1}{2} \int \frac {50+e^{x-x^6} \left (50-300 x^5\right )+e^x \left (1-x-6 e^{x-x^6} x^5\right )}{\left (50+e^x\right )^2} \, dx\\ &=\frac {1}{2} \int \left (-\frac {-50-e^x+e^x x}{\left (50+e^x\right )^2}-\frac {2 e^{x-x^6} \left (-25+150 x^5+3 e^x x^5\right )}{\left (50+e^x\right )^2}\right ) \, dx\\ &=-\left (\frac {1}{2} \int \frac {-50-e^x+e^x x}{\left (50+e^x\right )^2} \, dx\right )-\int \frac {e^{x-x^6} \left (-25+150 x^5+3 e^x x^5\right )}{\left (50+e^x\right )^2} \, dx\\ &=-\left (\frac {1}{2} \int \left (\frac {-1+x}{50+e^x}-\frac {50 x}{\left (50+e^x\right )^2}\right ) \, dx\right )-\int \left (-\frac {25 e^{x-x^6}}{\left (50+e^x\right )^2}+\frac {3 e^{x-x^6} x^5}{50+e^x}\right ) \, dx\\ &=-\left (\frac {1}{2} \int \frac {-1+x}{50+e^x} \, dx\right )-3 \int \frac {e^{x-x^6} x^5}{50+e^x} \, dx+25 \int \frac {e^{x-x^6}}{\left (50+e^x\right )^2} \, dx+25 \int \frac {x}{\left (50+e^x\right )^2} \, dx\\ &=-\frac {1}{200} (1-x)^2+\frac {1}{100} \int \frac {e^x (-1+x)}{50+e^x} \, dx-\frac {1}{2} \int \frac {e^x x}{\left (50+e^x\right )^2} \, dx+\frac {1}{2} \int \frac {x}{50+e^x} \, dx-3 \int \frac {e^{x-x^6} x^5}{50+e^x} \, dx+25 \int \frac {e^{x-x^6}}{\left (50+e^x\right )^2} \, dx\\ &=-\frac {1}{200} (1-x)^2+\frac {x}{2 \left (50+e^x\right )}+\frac {x^2}{200}-\frac {1}{100} (1-x) \log \left (1+\frac {e^x}{50}\right )-\frac {1}{100} \int \frac {e^x x}{50+e^x} \, dx-\frac {1}{100} \int \log \left (1+\frac {e^x}{50}\right ) \, dx-\frac {1}{2} \int \frac {1}{50+e^x} \, dx-3 \int \frac {e^{x-x^6} x^5}{50+e^x} \, dx+25 \int \frac {e^{x-x^6}}{\left (50+e^x\right )^2} \, dx\\ &=-\frac {1}{200} (1-x)^2+\frac {x}{2 \left (50+e^x\right )}+\frac {x^2}{200}-\frac {1}{100} (1-x) \log \left (1+\frac {e^x}{50}\right )-\frac {1}{100} x \log \left (1+\frac {e^x}{50}\right )+\frac {1}{100} \int \log \left (1+\frac {e^x}{50}\right ) \, dx-\frac {1}{100} \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{50}\right )}{x} \, dx,x,e^x\right )-\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{x (50+x)} \, dx,x,e^x\right )-3 \int \frac {e^{x-x^6} x^5}{50+e^x} \, dx+25 \int \frac {e^{x-x^6}}{\left (50+e^x\right )^2} \, dx\\ &=-\frac {1}{200} (1-x)^2+\frac {x}{2 \left (50+e^x\right )}+\frac {x^2}{200}-\frac {1}{100} (1-x) \log \left (1+\frac {e^x}{50}\right )-\frac {1}{100} x \log \left (1+\frac {e^x}{50}\right )+\frac {1}{100} \text {Li}_2\left (-\frac {e^x}{50}\right )-\frac {1}{100} \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^x\right )+\frac {1}{100} \operatorname {Subst}\left (\int \frac {1}{50+x} \, dx,x,e^x\right )+\frac {1}{100} \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{50}\right )}{x} \, dx,x,e^x\right )-3 \int \frac {e^{x-x^6} x^5}{50+e^x} \, dx+25 \int \frac {e^{x-x^6}}{\left (50+e^x\right )^2} \, dx\\ &=-\frac {1}{200} (1-x)^2-\frac {x}{100}+\frac {x}{2 \left (50+e^x\right )}+\frac {x^2}{200}-\frac {1}{100} (1-x) \log \left (1+\frac {e^x}{50}\right )-\frac {1}{100} x \log \left (1+\frac {e^x}{50}\right )+\frac {1}{100} \log \left (50+e^x\right )-3 \int \frac {e^{x-x^6} x^5}{50+e^x} \, dx+25 \int \frac {e^{x-x^6}}{\left (50+e^x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.49, size = 22, normalized size = 0.79 \begin {gather*} \frac {e^{x-x^6}+x}{2 \left (50+e^x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 18, normalized size = 0.64 \begin {gather*} \frac {x + e^{\left (-x^{6} + x\right )}}{2 \, {\left (e^{x} + 50\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.16, size = 69, normalized size = 2.46 \begin {gather*} \frac {50 \, x e^{\left (2 \, x^{6}\right )} + x e^{\left (2 \, x^{6} + x\right )} + e^{\left (x^{6} + 2 \, x\right )} + 50 \, e^{\left (x^{6} + x\right )}}{2 \, {\left (2500 \, e^{\left (2 \, x^{6}\right )} + e^{\left (2 \, x^{6} + 2 \, x\right )} + 100 \, e^{\left (2 \, x^{6} + x\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 38, normalized size = 1.36
method | result | size |
risch | \(\frac {x}{2 \,{\mathrm e}^{x}+100}+\frac {{\mathrm e}^{-x \left (x -1\right ) \left (x^{4}+x^{3}+x^{2}+x +1\right )}}{2 \,{\mathrm e}^{x}+100}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 31, normalized size = 1.11 \begin {gather*} \frac {1}{100} \, x - \frac {x e^{x}}{100 \, {\left (e^{x} + 50\right )}} + \frac {e^{\left (-x^{6} + x\right )}}{2 \, {\left (e^{x} + 50\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.40, size = 28, normalized size = 1.00 \begin {gather*} \frac {{\mathrm {e}}^{-x^6}}{2}+\frac {\frac {x}{2}-25\,{\mathrm {e}}^{-x^6}}{{\mathrm {e}}^x+50} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 20, normalized size = 0.71 \begin {gather*} \frac {x}{2 e^{x} + 100} + \frac {e^{- x^{6} + x}}{2 e^{x} + 100} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________