Optimal. Leaf size=22 \[ \frac {1}{16} x \left (-\frac {1}{x^2}+x+\frac {1}{4} \left (5+\log \left (\frac {5}{3}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 26, normalized size of antiderivative = 1.18, number of steps used = 4, number of rules used = 3, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {6, 12, 14} \begin {gather*} \frac {x^2}{16}-\frac {1}{16 x}+\frac {1}{64} x \left (5+\log \left (\frac {5}{3}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4+8 x^3+x^2 \left (5+\log \left (\frac {5}{3}\right )\right )}{64 x^2} \, dx\\ &=\frac {1}{64} \int \frac {4+8 x^3+x^2 \left (5+\log \left (\frac {5}{3}\right )\right )}{x^2} \, dx\\ &=\frac {1}{64} \int \left (\frac {4}{x^2}+8 x+5 \left (1+\frac {1}{5} \log \left (\frac {5}{3}\right )\right )\right ) \, dx\\ &=-\frac {1}{16 x}+\frac {x^2}{16}+\frac {1}{64} x \left (5+\log \left (\frac {5}{3}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 23, normalized size = 1.05 \begin {gather*} \frac {1}{64} \left (-\frac {4}{x}+4 x^2+x \left (5+\log \left (\frac {5}{3}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.87, size = 24, normalized size = 1.09 \begin {gather*} \frac {4 \, x^{3} - x^{2} \log \left (\frac {3}{5}\right ) + 5 \, x^{2} - 4}{64 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 19, normalized size = 0.86 \begin {gather*} \frac {1}{16} \, x^{2} - \frac {1}{64} \, x \log \left (\frac {3}{5}\right ) + \frac {5}{64} \, x - \frac {1}{16 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 20, normalized size = 0.91
method | result | size |
default | \(\frac {x^{2}}{16}-\frac {x \ln \left (\frac {3}{5}\right )}{64}+\frac {5 x}{64}-\frac {1}{16 x}\) | \(20\) |
gosper | \(-\frac {x^{2} \ln \left (\frac {3}{5}\right )-4 x^{3}-5 x^{2}+4}{64 x}\) | \(24\) |
risch | \(-\frac {x \ln \relax (3)}{64}+\frac {x \ln \relax (5)}{64}+\frac {x^{2}}{16}+\frac {5 x}{64}-\frac {1}{16 x}\) | \(25\) |
norman | \(\frac {-\frac {1}{16}+\left (-\frac {\ln \relax (3)}{64}+\frac {\ln \relax (5)}{64}+\frac {5}{64}\right ) x^{2}+\frac {x^{3}}{16}}{x}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 18, normalized size = 0.82 \begin {gather*} \frac {1}{16} \, x^{2} - \frac {1}{64} \, x {\left (\log \left (\frac {3}{5}\right ) - 5\right )} - \frac {1}{16 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.04, size = 19, normalized size = 0.86 \begin {gather*} x\,\left (\frac {\ln \left (\frac {5}{3}\right )}{64}+\frac {5}{64}\right )-\frac {1}{16\,x}+\frac {x^2}{16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 20, normalized size = 0.91 \begin {gather*} \frac {x^{2}}{16} + \frac {x \left (- \log {\relax (3 )} + \log {\relax (5 )} + 5\right )}{64} - \frac {1}{16 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________