Optimal. Leaf size=21 \[ 2 \left (6-\frac {x+\log (x)}{-\frac {3}{x^2}+2 x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.83, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {6 x+18 x^2-4 x^4+\left (12 x+4 x^4\right ) \log (x)}{9-12 x^3+4 x^6} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=4 \int \frac {6 x+18 x^2-4 x^4+\left (12 x+4 x^4\right ) \log (x)}{\left (-6+4 x^3\right )^2} \, dx\\ &=4 \int \frac {2 x \left (3+9 x-2 x^3+6 \log (x)+2 x^3 \log (x)\right )}{\left (6-4 x^3\right )^2} \, dx\\ &=8 \int \frac {x \left (3+9 x-2 x^3+6 \log (x)+2 x^3 \log (x)\right )}{\left (6-4 x^3\right )^2} \, dx\\ &=8 \int \left (-\frac {x \left (-3-9 x+2 x^3\right )}{4 \left (-3+2 x^3\right )^2}+\frac {x \left (3+x^3\right ) \log (x)}{2 \left (-3+2 x^3\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {x \left (-3-9 x+2 x^3\right )}{\left (-3+2 x^3\right )^2} \, dx\right )+4 \int \frac {x \left (3+x^3\right ) \log (x)}{\left (-3+2 x^3\right )^2} \, dx\\ &=\frac {2 x^3}{3-2 x^3}-\frac {1}{18} \int \frac {36 x}{-3+2 x^3} \, dx+4 \int \left (\frac {9 x \log (x)}{2 \left (-3+2 x^3\right )^2}+\frac {x \log (x)}{2 \left (-3+2 x^3\right )}\right ) \, dx\\ &=\frac {2 x^3}{3-2 x^3}-2 \int \frac {x}{-3+2 x^3} \, dx+2 \int \frac {x \log (x)}{-3+2 x^3} \, dx+18 \int \frac {x \log (x)}{\left (-3+2 x^3\right )^2} \, dx\\ &=\frac {2 x^3}{3-2 x^3}+2 \int \left (-\frac {(-1)^{2/3} \log (x)}{3 \sqrt [3]{6} \left (\sqrt [3]{3}+\sqrt [3]{-2} x\right )}-\frac {\log (x)}{3 \sqrt [3]{6} \left (\sqrt [3]{3}-\sqrt [3]{2} x\right )}+\frac {\sqrt [3]{-\frac {1}{6}} \log (x)}{3 \left (\sqrt [3]{3}-(-1)^{2/3} \sqrt [3]{2} x\right )}\right ) \, dx+18 \int \frac {x \log (x)}{\left (-3+2 x^3\right )^2} \, dx-\frac {2^{2/3} \int \frac {1}{-\sqrt [3]{3}+\sqrt [3]{2} x} \, dx}{3 \sqrt [3]{3}}+\frac {2^{2/3} \int \frac {-\sqrt [3]{3}+\sqrt [3]{2} x}{3^{2/3}+\sqrt [3]{6} x+2^{2/3} x^2} \, dx}{3 \sqrt [3]{3}}\\ &=\frac {2 x^3}{3-2 x^3}-\frac {1}{3} \sqrt [3]{\frac {2}{3}} \log \left (\sqrt [3]{3}-\sqrt [3]{2} x\right )+18 \int \frac {x \log (x)}{\left (-3+2 x^3\right )^2} \, dx-\frac {\int \frac {1}{3^{2/3}+\sqrt [3]{6} x+2^{2/3} x^2} \, dx}{\sqrt [3]{2}}+\frac {1}{3} \left (\sqrt [3]{-\frac {1}{3}} 2^{2/3}\right ) \int \frac {\log (x)}{\sqrt [3]{3}-(-1)^{2/3} \sqrt [3]{2} x} \, dx-\frac {(-2)^{2/3} \int \frac {\log (x)}{\sqrt [3]{3}+\sqrt [3]{-2} x} \, dx}{3 \sqrt [3]{3}}+\frac {\int \frac {\sqrt [3]{6}+2\ 2^{2/3} x}{3^{2/3}+\sqrt [3]{6} x+2^{2/3} x^2} \, dx}{3\ 2^{2/3} \sqrt [3]{3}}-\frac {2^{2/3} \int \frac {\log (x)}{\sqrt [3]{3}-\sqrt [3]{2} x} \, dx}{3 \sqrt [3]{3}}\\ &=\frac {2 x^3}{3-2 x^3}-\frac {1}{3} \sqrt [3]{-\frac {2}{3}} \log (x) \log \left (1+\sqrt [3]{-\frac {2}{3}} x\right )+\frac {1}{3} (-1)^{2/3} \sqrt [3]{\frac {2}{3}} \log (x) \log \left (1-(-1)^{2/3} \sqrt [3]{\frac {2}{3}} x\right )-\frac {1}{3} \sqrt [3]{\frac {2}{3}} \log \left (\sqrt [3]{3}-\sqrt [3]{2} x\right )+\frac {1}{9} \sqrt [3]{\frac {2}{3}} \log \left (\frac {3}{2}\right ) \log \left (\sqrt [3]{3}-\sqrt [3]{2} x\right )+\frac {\log \left (3^{2/3}+\sqrt [3]{6} x+2^{2/3} x^2\right )}{3\ 2^{2/3} \sqrt [3]{3}}+18 \int \frac {x \log (x)}{\left (-3+2 x^3\right )^2} \, dx+\frac {1}{3} \sqrt [3]{-\frac {2}{3}} \int \frac {\log \left (1+\sqrt [3]{-\frac {2}{3}} x\right )}{x} \, dx+\sqrt [3]{\frac {2}{3}} \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+2 \sqrt [3]{\frac {2}{3}} x\right )-\frac {1}{3} \left ((-1)^{2/3} \sqrt [3]{\frac {2}{3}}\right ) \int \frac {\log \left (1-(-1)^{2/3} \sqrt [3]{\frac {2}{3}} x\right )}{x} \, dx-\frac {2^{2/3} \int \frac {\log \left (\sqrt [3]{\frac {2}{3}} x\right )}{\sqrt [3]{3}-\sqrt [3]{2} x} \, dx}{3 \sqrt [3]{3}}\\ &=\frac {2 x^3}{3-2 x^3}-\frac {\sqrt [3]{2} \tan ^{-1}\left (\frac {\sqrt [3]{3}+2 \sqrt [3]{2} x}{3^{5/6}}\right )}{3^{5/6}}-\frac {1}{3} \sqrt [3]{-\frac {2}{3}} \log (x) \log \left (1+\sqrt [3]{-\frac {2}{3}} x\right )+\frac {1}{3} (-1)^{2/3} \sqrt [3]{\frac {2}{3}} \log (x) \log \left (1-(-1)^{2/3} \sqrt [3]{\frac {2}{3}} x\right )-\frac {1}{3} \sqrt [3]{\frac {2}{3}} \log \left (\sqrt [3]{3}-\sqrt [3]{2} x\right )+\frac {1}{9} \sqrt [3]{\frac {2}{3}} \log \left (\frac {3}{2}\right ) \log \left (\sqrt [3]{3}-\sqrt [3]{2} x\right )+\frac {\log \left (3^{2/3}+\sqrt [3]{6} x+2^{2/3} x^2\right )}{3\ 2^{2/3} \sqrt [3]{3}}-\frac {1}{3} \sqrt [3]{-\frac {2}{3}} \text {Li}_2\left (-\sqrt [3]{-\frac {2}{3}} x\right )+\frac {1}{3} (-1)^{2/3} \sqrt [3]{\frac {2}{3}} \text {Li}_2\left ((-1)^{2/3} \sqrt [3]{\frac {2}{3}} x\right )-\frac {1}{3} \sqrt [3]{\frac {2}{3}} \text {Li}_2\left (1-\sqrt [3]{\frac {2}{3}} x\right )+18 \int \frac {x \log (x)}{\left (-3+2 x^3\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 20, normalized size = 0.95 \begin {gather*} \frac {2 \left (3+2 x^2 \log (x)\right )}{6-4 x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 20, normalized size = 0.95 \begin {gather*} -\frac {2 \, x^{2} \log \relax (x) + 3}{2 \, x^{3} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 28, normalized size = 1.33 \begin {gather*} -\frac {2 \, x^{2} \log \relax (x)}{2 \, x^{3} - 3} - \frac {3}{2 \, x^{3} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 20, normalized size = 0.95
method | result | size |
norman | \(\frac {-2 x^{2} \ln \relax (x )-3}{2 x^{3}-3}\) | \(20\) |
default | \(-\frac {3}{2 \left (x^{3}-\frac {3}{2}\right )}-\frac {2 \ln \relax (x ) x^{2}}{2 x^{3}-3}\) | \(27\) |
risch | \(-\frac {2 \ln \relax (x ) x^{2}}{2 x^{3}-3}-\frac {3}{2 x^{3}-3}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.18, size = 28, normalized size = 1.33 \begin {gather*} -\frac {2 \, x^{2} \log \relax (x)}{2 \, x^{3} - 3} - \frac {3}{2 \, x^{3} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.32, size = 20, normalized size = 0.95 \begin {gather*} -\frac {2\,x^2\,\ln \relax (x)+3}{2\,x^3-3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 24, normalized size = 1.14 \begin {gather*} - \frac {2 x^{2} \log {\relax (x )}}{2 x^{3} - 3} - \frac {18}{12 x^{3} - 18} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________