Optimal. Leaf size=24 \[ 3+x+\frac {1}{20} x \log \left (\left (\frac {9}{e^4}-x\right ) \left (x+x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.35, antiderivative size = 86, normalized size of antiderivative = 3.58, number of steps used = 12, number of rules used = 7, integrand size = 83, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.084, Rules used = {6741, 6728, 893, 2523, 1657, 632, 31} \begin {gather*} \frac {1}{20} x \log \left (x \left (-e^4 x^2+\left (9-e^4\right ) x+9\right )\right )+\frac {4 x}{5}-\frac {1}{20} \log (x+1)+\frac {9 \log \left (9-e^4 x\right )}{20 e^4}-\frac {9 \log \left (e^4 x-9\right )}{20 e^4}+\frac {1}{20} \log \left (e^4 x+e^4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 31
Rule 632
Rule 893
Rule 1657
Rule 2523
Rule 6728
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {189+198 x-e^4 \left (22 x+23 x^2\right )-\left (-9-9 x+e^4 \left (x+x^2\right )\right ) \log \left (\frac {9 x+9 x^2+e^4 \left (-x^2-x^3\right )}{e^4}\right )}{180+20 \left (9-e^4\right ) x-20 e^4 x^2} \, dx\\ &=\int \left (\frac {189+22 \left (9-e^4\right ) x-23 e^4 x^2}{20 (1+x) \left (9-e^4 x\right )}+\frac {1}{20} \left (-4+\log \left (-x \left (-9+\left (-9+e^4\right ) x+e^4 x^2\right )\right )\right )\right ) \, dx\\ &=\frac {1}{20} \int \frac {189+22 \left (9-e^4\right ) x-23 e^4 x^2}{(1+x) \left (9-e^4 x\right )} \, dx+\frac {1}{20} \int \left (-4+\log \left (-x \left (-9+\left (-9+e^4\right ) x+e^4 x^2\right )\right )\right ) \, dx\\ &=-\frac {x}{5}+\frac {1}{20} \int \left (23+\frac {1}{-1-x}+\frac {9}{-9+e^4 x}\right ) \, dx+\frac {1}{20} \int \log \left (-x \left (-9+\left (-9+e^4\right ) x+e^4 x^2\right )\right ) \, dx\\ &=\frac {19 x}{20}-\frac {1}{20} \log (1+x)+\frac {9 \log \left (9-e^4 x\right )}{20 e^4}+\frac {1}{20} x \log \left (x \left (9+\left (9-e^4\right ) x-e^4 x^2\right )\right )-\frac {1}{20} \int \frac {9+2 \left (9-e^4\right ) x-3 e^4 x^2}{9+\left (9-e^4\right ) x-e^4 x^2} \, dx\\ &=\frac {19 x}{20}-\frac {1}{20} \log (1+x)+\frac {9 \log \left (9-e^4 x\right )}{20 e^4}+\frac {1}{20} x \log \left (x \left (9+\left (9-e^4\right ) x-e^4 x^2\right )\right )-\frac {1}{20} \int \left (3-\frac {18+\left (9-e^4\right ) x}{9+\left (9-e^4\right ) x-e^4 x^2}\right ) \, dx\\ &=\frac {4 x}{5}-\frac {1}{20} \log (1+x)+\frac {9 \log \left (9-e^4 x\right )}{20 e^4}+\frac {1}{20} x \log \left (x \left (9+\left (9-e^4\right ) x-e^4 x^2\right )\right )+\frac {1}{20} \int \frac {18+\left (9-e^4\right ) x}{9+\left (9-e^4\right ) x-e^4 x^2} \, dx\\ &=\frac {4 x}{5}-\frac {1}{20} \log (1+x)+\frac {9 \log \left (9-e^4 x\right )}{20 e^4}+\frac {1}{20} x \log \left (x \left (9+\left (9-e^4\right ) x-e^4 x^2\right )\right )+\frac {9}{20} \int \frac {1}{\frac {1}{2} \left (9-e^4\right )+\frac {1}{2} \left (9+e^4\right )-e^4 x} \, dx-\frac {1}{20} e^4 \int \frac {1}{\frac {1}{2} \left (-9-e^4\right )+\frac {1}{2} \left (9-e^4\right )-e^4 x} \, dx\\ &=\frac {4 x}{5}-\frac {1}{20} \log (1+x)+\frac {9 \log \left (9-e^4 x\right )}{20 e^4}-\frac {9 \log \left (-9+e^4 x\right )}{20 e^4}+\frac {1}{20} \log \left (e^4+e^4 x\right )+\frac {1}{20} x \log \left (x \left (9+\left (9-e^4\right ) x-e^4 x^2\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 32, normalized size = 1.33 \begin {gather*} \frac {1}{20} \left (16 x+x \log \left (x \left (9+\left (9-e^4\right ) x-e^4 x^2\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 29, normalized size = 1.21 \begin {gather*} \frac {1}{20} \, x \log \left ({\left (9 \, x^{2} - {\left (x^{3} + x^{2}\right )} e^{4} + 9 \, x\right )} e^{\left (-4\right )}\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.82, size = 31, normalized size = 1.29 \begin {gather*} \frac {1}{20} \, x \log \left (-x^{3} e^{4} - x^{2} e^{4} + 9 \, x^{2} + 9 \, x\right ) + \frac {4}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 32, normalized size = 1.33
method | result | size |
default | \(\frac {4 x}{5}+\frac {x \ln \left (x \left (-x^{2} {\mathrm e}^{4}-x \,{\mathrm e}^{4}+9 x +9\right )\right )}{20}\) | \(32\) |
risch | \(x +\frac {x \ln \left (\left (\left (-x^{3}-x^{2}\right ) {\mathrm e}^{4}+9 x^{2}+9 x \right ) {\mathrm e}^{-4}\right )}{20}\) | \(33\) |
norman | \(x +\frac {x \ln \left (\left (\left (-x^{3}-x^{2}\right ) {\mathrm e}^{4}+9 x^{2}+9 x \right ) {\mathrm e}^{-4}\right )}{20}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 162, normalized size = 6.75 \begin {gather*} \frac {23}{20} \, {\left (x e^{\left (-4\right )} + \frac {81 \, \log \left (x e^{4} - 9\right )}{e^{12} + 9 \, e^{8}} - \frac {\log \left (x + 1\right )}{e^{4} + 9}\right )} e^{4} + \frac {11}{10} \, {\left (\frac {9 \, \log \left (x e^{4} - 9\right )}{e^{8} + 9 \, e^{4}} + \frac {\log \left (x + 1\right )}{e^{4} + 9}\right )} e^{4} + \frac {1}{20} \, {\left (x e^{4} \log \relax (x) - 7 \, x e^{4} + {\left (x e^{4} - 9\right )} \log \left (-x e^{4} + 9\right ) + {\left (x e^{4} + e^{4}\right )} \log \left (x + 1\right )\right )} e^{\left (-4\right )} - \frac {891 \, \log \left (x e^{4} - 9\right )}{10 \, {\left (e^{8} + 9 \, e^{4}\right )}} - \frac {189 \, \log \left (x e^{4} - 9\right )}{20 \, {\left (e^{4} + 9\right )}} - \frac {9 \, \log \left (x + 1\right )}{20 \, {\left (e^{4} + 9\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.05, size = 29, normalized size = 1.21 \begin {gather*} \frac {x\,\left (\ln \left ({\mathrm {e}}^{-4}\,\left (9\,x-{\mathrm {e}}^4\,\left (x^3+x^2\right )+9\,x^2\right )\right )+20\right )}{20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 29, normalized size = 1.21 \begin {gather*} \frac {x \log {\left (\frac {9 x^{2} + 9 x + \left (- x^{3} - x^{2}\right ) e^{4}}{e^{4}} \right )}}{20} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________