Optimal. Leaf size=21 \[ x+\frac {x}{16 \left (-5+e^x+\frac {1}{3} (-5+x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.56, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {6340+144 e^{2 x}-640 x+16 x^2+e^x (-1911+87 x)}{6400+144 e^{2 x}-640 x+16 x^2+e^x (-1920+96 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6340+144 e^{2 x}-640 x+16 x^2+e^x (-1911+87 x)}{16 \left (20-3 e^x-x\right )^2} \, dx\\ &=\frac {1}{16} \int \frac {6340+144 e^{2 x}-640 x+16 x^2+e^x (-1911+87 x)}{\left (20-3 e^x-x\right )^2} \, dx\\ &=\frac {1}{16} \int \left (16+\frac {3 (-21+x) x}{\left (-20+3 e^x+x\right )^2}-\frac {3 (-1+x)}{-20+3 e^x+x}\right ) \, dx\\ &=x+\frac {3}{16} \int \frac {(-21+x) x}{\left (-20+3 e^x+x\right )^2} \, dx-\frac {3}{16} \int \frac {-1+x}{-20+3 e^x+x} \, dx\\ &=x+\frac {3}{16} \int \left (-\frac {21 x}{\left (-20+3 e^x+x\right )^2}+\frac {x^2}{\left (-20+3 e^x+x\right )^2}\right ) \, dx-\frac {3}{16} \int \left (-\frac {1}{-20+3 e^x+x}+\frac {x}{-20+3 e^x+x}\right ) \, dx\\ &=x+\frac {3}{16} \int \frac {x^2}{\left (-20+3 e^x+x\right )^2} \, dx+\frac {3}{16} \int \frac {1}{-20+3 e^x+x} \, dx-\frac {3}{16} \int \frac {x}{-20+3 e^x+x} \, dx-\frac {63}{16} \int \frac {x}{\left (-20+3 e^x+x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 21, normalized size = 1.00 \begin {gather*} \frac {1}{16} \left (16 x+\frac {3 x}{-20+3 e^x+x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 25, normalized size = 1.19 \begin {gather*} \frac {16 \, x^{2} + 48 \, x e^{x} - 317 \, x}{16 \, {\left (x + 3 \, e^{x} - 20\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 25, normalized size = 1.19 \begin {gather*} \frac {16 \, x^{2} + 48 \, x e^{x} - 317 \, x}{16 \, {\left (x + 3 \, e^{x} - 20\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 15, normalized size = 0.71
method | result | size |
risch | \(x +\frac {3 x}{16 \left (-20+3 \,{\mathrm e}^{x}+x \right )}\) | \(15\) |
norman | \(\frac {x^{2}+\frac {951 \,{\mathrm e}^{x}}{16}+3 \,{\mathrm e}^{x} x -\frac {1585}{4}}{-20+3 \,{\mathrm e}^{x}+x}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 25, normalized size = 1.19 \begin {gather*} \frac {16 \, x^{2} + 48 \, x e^{x} - 317 \, x}{16 \, {\left (x + 3 \, e^{x} - 20\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.49, size = 16, normalized size = 0.76 \begin {gather*} x+\frac {3\,x}{16\,x+48\,{\mathrm {e}}^x-320} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 14, normalized size = 0.67 \begin {gather*} x + \frac {3 x}{16 x + 48 e^{x} - 320} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________