Optimal. Leaf size=19 \[ e^{\left (-4+e^4+e^6\right ) x} (x-\log (4)) \]
________________________________________________________________________________________
Rubi [B] time = 0.06, antiderivative size = 99, normalized size of antiderivative = 5.21, number of steps used = 5, number of rules used = 4, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.085, Rules used = {6, 2187, 2176, 2194} \begin {gather*} \frac {e^{-\left (\left (4-e^4-e^6\right ) x\right )}}{4-e^4-e^6}-\frac {e^{-\left (\left (4-e^4-e^6\right ) x\right )} \left (-\left (\left (4-e^4-e^6\right ) x\right )+1+\log (256)-e^6 \log (4)-e^4 \log (4)\right )}{4-e^4-e^6} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2176
Rule 2187
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int e^{-4 x+e^4 x+e^6 x} \left (1+e^6 x+\left (-4+e^4\right ) x+\left (4-e^4-e^6\right ) \log (4)\right ) \, dx\\ &=\int e^{-4 x+e^4 x+e^6 x} \left (1+\left (-4+e^4+e^6\right ) x+\left (4-e^4-e^6\right ) \log (4)\right ) \, dx\\ &=\int e^{-\left (\left (4-e^4-e^6\right ) x\right )} \left (1-\left (4-e^4-e^6\right ) x-e^4 \log (4)-e^6 \log (4)+\log (256)\right ) \, dx\\ &=-\frac {e^{-\left (\left (4-e^4-e^6\right ) x\right )} \left (1-\left (4-e^4-e^6\right ) x-e^4 \log (4)-e^6 \log (4)+\log (256)\right )}{4-e^4-e^6}-\int e^{\left (-4+e^4+e^6\right ) x} \, dx\\ &=\frac {e^{-\left (\left (4-e^4-e^6\right ) x\right )}}{4-e^4-e^6}-\frac {e^{-\left (\left (4-e^4-e^6\right ) x\right )} \left (1-\left (4-e^4-e^6\right ) x-e^4 \log (4)-e^6 \log (4)+\log (256)\right )}{4-e^4-e^6}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.03, size = 50, normalized size = 2.63 \begin {gather*} \frac {e^{\left (-4+e^4+e^6\right ) x} \left (\left (-4+e^4+e^6\right ) x-e^4 \log (4)-e^6 \log (4)+\log (256)\right )}{-4+e^4+e^6} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 20, normalized size = 1.05 \begin {gather*} {\left (x - 2 \, \log \relax (2)\right )} e^{\left (x e^{6} + x e^{4} - 4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 202, normalized size = 10.63 \begin {gather*} \frac {{\left (x e^{6} + x e^{4} - 2 \, e^{6} \log \relax (2) - 2 \, e^{4} \log \relax (2) - 4 \, x + 8 \, \log \relax (2) - 1\right )} e^{\left (x e^{6} + x e^{4} - 4 \, x + 6\right )}}{e^{12} + 2 \, e^{10} + e^{8} - 8 \, e^{6} - 8 \, e^{4} + 16} + \frac {{\left (x e^{6} + x e^{4} - 2 \, e^{6} \log \relax (2) - 2 \, e^{4} \log \relax (2) - 4 \, x + 8 \, \log \relax (2) - 1\right )} e^{\left (x e^{6} + x e^{4} - 4 \, x + 4\right )}}{e^{12} + 2 \, e^{10} + e^{8} - 8 \, e^{6} - 8 \, e^{4} + 16} - \frac {{\left (4 \, x e^{6} + 4 \, x e^{4} - 8 \, e^{6} \log \relax (2) - 8 \, e^{4} \log \relax (2) - 16 \, x - e^{6} - e^{4} + 32 \, \log \relax (2)\right )} e^{\left (x e^{6} + x e^{4} - 4 \, x\right )}}{e^{12} + 2 \, e^{10} + e^{8} - 8 \, e^{6} - 8 \, e^{4} + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 17, normalized size = 0.89
method | result | size |
risch | \(\left (x -2 \ln \relax (2)\right ) {\mathrm e}^{x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )}\) | \(17\) |
gosper | \(-{\mathrm e}^{x \,{\mathrm e}^{4}+x \,{\mathrm e}^{6}-4 x} \left (2 \ln \relax (2)-x \right )\) | \(26\) |
norman | \(x \,{\mathrm e}^{x \,{\mathrm e}^{4}+x \,{\mathrm e}^{6}-4 x}-2 \ln \relax (2) {\mathrm e}^{x \,{\mathrm e}^{4}+x \,{\mathrm e}^{6}-4 x}\) | \(38\) |
meijerg | \(-\frac {2 \ln \relax (2) {\mathrm e}^{6} \left (1-{\mathrm e}^{-x \left (-{\mathrm e}^{4}-{\mathrm e}^{6}+4\right )}\right )}{-{\mathrm e}^{4}-{\mathrm e}^{6}+4}-\frac {2 \,{\mathrm e}^{4} \ln \relax (2) \left (1-{\mathrm e}^{-x \left (-{\mathrm e}^{4}-{\mathrm e}^{6}+4\right )}\right )}{-{\mathrm e}^{4}-{\mathrm e}^{6}+4}+\frac {8 \ln \relax (2) \left (1-{\mathrm e}^{-x \left (-{\mathrm e}^{4}-{\mathrm e}^{6}+4\right )}\right )}{-{\mathrm e}^{4}-{\mathrm e}^{6}+4}+\frac {1-{\mathrm e}^{-x \left (-{\mathrm e}^{4}-{\mathrm e}^{6}+4\right )}}{-{\mathrm e}^{4}-{\mathrm e}^{6}+4}+\frac {\left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right ) \left (1-\frac {\left (2+2 x \left (-{\mathrm e}^{4}-{\mathrm e}^{6}+4\right )\right ) {\mathrm e}^{-x \left (-{\mathrm e}^{4}-{\mathrm e}^{6}+4\right )}}{2}\right )}{\left (-{\mathrm e}^{4}-{\mathrm e}^{6}+4\right )^{2}}\) | \(191\) |
derivativedivides | \(\frac {\frac {{\mathrm e}^{6} \left ({\mathrm e}^{x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )} x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )-{\mathrm e}^{x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )}\right )}{{\mathrm e}^{4}+{\mathrm e}^{6}-4}+\frac {{\mathrm e}^{4} \left ({\mathrm e}^{x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )} x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )-{\mathrm e}^{x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )}\right )}{{\mathrm e}^{4}+{\mathrm e}^{6}-4}+8 \,{\mathrm e}^{x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )} \ln \relax (2)-\frac {4 \left ({\mathrm e}^{x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )} x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )-{\mathrm e}^{x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )}\right )}{{\mathrm e}^{4}+{\mathrm e}^{6}-4}-2 \,{\mathrm e}^{x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )} {\mathrm e}^{4} \ln \relax (2)-2 \,{\mathrm e}^{x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )} \ln \relax (2) {\mathrm e}^{6}+{\mathrm e}^{x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )}}{{\mathrm e}^{4}+{\mathrm e}^{6}-4}\) | \(220\) |
default | \(\frac {\frac {{\mathrm e}^{6} \left ({\mathrm e}^{x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )} x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )-{\mathrm e}^{x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )}\right )}{{\mathrm e}^{4}+{\mathrm e}^{6}-4}+\frac {{\mathrm e}^{4} \left ({\mathrm e}^{x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )} x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )-{\mathrm e}^{x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )}\right )}{{\mathrm e}^{4}+{\mathrm e}^{6}-4}+8 \,{\mathrm e}^{x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )} \ln \relax (2)-\frac {4 \left ({\mathrm e}^{x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )} x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )-{\mathrm e}^{x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )}\right )}{{\mathrm e}^{4}+{\mathrm e}^{6}-4}-2 \,{\mathrm e}^{x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )} {\mathrm e}^{4} \ln \relax (2)-2 \,{\mathrm e}^{x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )} \ln \relax (2) {\mathrm e}^{6}+{\mathrm e}^{x \left ({\mathrm e}^{4}+{\mathrm e}^{6}-4\right )}}{{\mathrm e}^{4}+{\mathrm e}^{6}-4}\) | \(220\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.43, size = 245, normalized size = 12.89 \begin {gather*} \frac {{\left (x {\left (e^{12} + e^{10} - 4 \, e^{6}\right )} - e^{6}\right )} e^{\left (x e^{6} + x e^{4} - 4 \, x\right )}}{e^{12} + 2 \, e^{10} + e^{8} - 8 \, e^{6} - 8 \, e^{4} + 16} + \frac {{\left (x {\left (e^{10} + e^{8} - 4 \, e^{4}\right )} - e^{4}\right )} e^{\left (x e^{6} + x e^{4} - 4 \, x\right )}}{e^{12} + 2 \, e^{10} + e^{8} - 8 \, e^{6} - 8 \, e^{4} + 16} - \frac {4 \, {\left (x {\left (e^{6} + e^{4} - 4\right )} - 1\right )} e^{\left (x e^{6} + x e^{4} - 4 \, x\right )}}{e^{12} + 2 \, e^{10} + e^{8} - 8 \, e^{6} - 8 \, e^{4} + 16} - \frac {2 \, e^{\left (x e^{6} + x e^{4} - 4 \, x + 6\right )} \log \relax (2)}{e^{6} + e^{4} - 4} - \frac {2 \, e^{\left (x e^{6} + x e^{4} - 4 \, x + 4\right )} \log \relax (2)}{e^{6} + e^{4} - 4} + \frac {8 \, e^{\left (x e^{6} + x e^{4} - 4 \, x\right )} \log \relax (2)}{e^{6} + e^{4} - 4} + \frac {e^{\left (x e^{6} + x e^{4} - 4 \, x\right )}}{e^{6} + e^{4} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 21, normalized size = 1.11 \begin {gather*} {\mathrm {e}}^{-4\,x}\,{\mathrm {e}}^{x\,{\mathrm {e}}^4}\,{\mathrm {e}}^{x\,{\mathrm {e}}^6}\,\left (x-\ln \relax (4)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 20, normalized size = 1.05 \begin {gather*} \left (x - 2 \log {\relax (2 )}\right ) e^{- 4 x + x e^{4} + x e^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________