Optimal. Leaf size=27 \[ \frac {\left (3+e^{\frac {x}{\frac {21}{25}-e^4+x}}\right )^2}{9 x^2} \]
________________________________________________________________________________________
Rubi [B] time = 7.34, antiderivative size = 421, normalized size of antiderivative = 15.59, number of steps used = 107, number of rules used = 13, integrand size = 150, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {6, 6741, 12, 6742, 44, 77, 2230, 2209, 2210, 2232, 2231, 2233, 2178} \begin {gather*} \frac {2 e^{\frac {25 x}{25 x-25 e^4+21}}}{3 x^2}+\frac {e^{\frac {50 x}{25 x-25 e^4+21}}}{9 x^2}+\frac {441+625 e^8}{\left (21-25 e^4\right )^2 x^2}-\frac {1050 e^4}{\left (21-25 e^4\right )^2 x^2}-\frac {100 \left (441+625 e^8\right )}{\left (21-25 e^4\right )^3 x}+\frac {2500 e^4 \left (21+25 e^4\right )}{\left (21-25 e^4\right )^3 x}+\frac {2100}{\left (21-25 e^4\right )^2 x}-\frac {1250 \left (441+625 e^8\right )}{\left (21-25 e^4\right )^3 \left (25 x-25 e^4+21\right )}-\frac {1250}{\left (21-25 e^4\right ) \left (25 x-25 e^4+21\right )}+\frac {52500}{\left (21-25 e^4\right )^2 \left (25 x-25 e^4+21\right )}+\frac {1562500 e^8}{\left (21-25 e^4\right )^3 \left (25 x-25 e^4+21\right )}-\frac {3750 \left (441+625 e^8\right ) \log (x)}{\left (21-25 e^4\right )^4}+\frac {62500 e^4 \left (21+50 e^4\right ) \log (x)}{\left (21-25 e^4\right )^4}-\frac {1250 \log (x)}{\left (21-25 e^4\right )^2}+\frac {105000 \log (x)}{\left (21-25 e^4\right )^3}+\frac {3750 \left (441+625 e^8\right ) \log \left (25 x-25 e^4+21\right )}{\left (21-25 e^4\right )^4}-\frac {62500 e^4 \left (21+50 e^4\right ) \log \left (25 x-25 e^4+21\right )}{\left (21-25 e^4\right )^4}+\frac {1250 \log \left (25 x-25 e^4+21\right )}{\left (21-25 e^4\right )^2}-\frac {105000 \log \left (25 x-25 e^4+21\right )}{\left (21-25 e^4\right )^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 44
Rule 77
Rule 2178
Rule 2209
Rule 2210
Rule 2230
Rule 2231
Rule 2232
Rule 2233
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-7938-11250 e^8-18900 x-11250 x^2+e^4 (18900+22500 x)+e^{-\frac {50 x}{-21+25 e^4-25 x}} \left (-882-1250 e^8-1050 x-1250 x^2+e^4 (2100+1250 x)\right )+e^{-\frac {25 x}{-21+25 e^4-25 x}} \left (-5292-7500 e^8-9450 x-7500 x^2+e^4 (12600+11250 x)\right )}{\left (3969+5625 e^8\right ) x^3+9450 x^4+5625 x^5+e^4 \left (-9450 x^3-11250 x^4\right )} \, dx\\ &=\int \frac {-7938 \left (1+\frac {625 e^8}{441}\right )-18900 x-11250 x^2+e^4 (18900+22500 x)+e^{-\frac {50 x}{-21+25 e^4-25 x}} \left (-882-1250 e^8-1050 x-1250 x^2+e^4 (2100+1250 x)\right )+e^{-\frac {25 x}{-21+25 e^4-25 x}} \left (-5292-7500 e^8-9450 x-7500 x^2+e^4 (12600+11250 x)\right )}{9 x^3 \left (21-25 e^4+25 x\right )^2} \, dx\\ &=\frac {1}{9} \int \frac {-7938 \left (1+\frac {625 e^8}{441}\right )-18900 x-11250 x^2+e^4 (18900+22500 x)+e^{-\frac {50 x}{-21+25 e^4-25 x}} \left (-882-1250 e^8-1050 x-1250 x^2+e^4 (2100+1250 x)\right )+e^{-\frac {25 x}{-21+25 e^4-25 x}} \left (-5292-7500 e^8-9450 x-7500 x^2+e^4 (12600+11250 x)\right )}{x^3 \left (21-25 e^4+25 x\right )^2} \, dx\\ &=\frac {1}{9} \int \left (-\frac {18 \left (441+625 e^8\right )}{\left (-21+25 e^4-25 x\right )^2 x^3}+\frac {900 e^4 (21+25 x)}{\left (-21+25 e^4-25 x\right )^2 x^3}-\frac {18900}{x^2 \left (21-25 e^4+25 x\right )^2}-\frac {11250}{x \left (21-25 e^4+25 x\right )^2}+\frac {6 e^{\frac {25 x}{21-25 e^4+25 x}} \left (-2 \left (21-25 e^4\right )^2-75 \left (21-25 e^4\right ) x-1250 x^2\right )}{x^3 \left (21-25 e^4+25 x\right )^2}+\frac {2 e^{\frac {50 x}{21-25 e^4+25 x}} \left (-\left (21-25 e^4\right )^2-25 \left (21-25 e^4\right ) x-625 x^2\right )}{x^3 \left (21-25 e^4+25 x\right )^2}\right ) \, dx\\ &=\frac {2}{9} \int \frac {e^{\frac {50 x}{21-25 e^4+25 x}} \left (-\left (21-25 e^4\right )^2-25 \left (21-25 e^4\right ) x-625 x^2\right )}{x^3 \left (21-25 e^4+25 x\right )^2} \, dx+\frac {2}{3} \int \frac {e^{\frac {25 x}{21-25 e^4+25 x}} \left (-2 \left (21-25 e^4\right )^2-75 \left (21-25 e^4\right ) x-1250 x^2\right )}{x^3 \left (21-25 e^4+25 x\right )^2} \, dx-1250 \int \frac {1}{x \left (21-25 e^4+25 x\right )^2} \, dx-2100 \int \frac {1}{x^2 \left (21-25 e^4+25 x\right )^2} \, dx+\left (100 e^4\right ) \int \frac {21+25 x}{\left (-21+25 e^4-25 x\right )^2 x^3} \, dx-\left (2 \left (441+625 e^8\right )\right ) \int \frac {1}{\left (-21+25 e^4-25 x\right )^2 x^3} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 28, normalized size = 1.04 \begin {gather*} \frac {\left (3+e^{\frac {25 x}{21-25 e^4+25 x}}\right )^2}{9 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.96, size = 39, normalized size = 1.44 \begin {gather*} \frac {e^{\left (\frac {50 \, x}{25 \, x - 25 \, e^{4} + 21}\right )} + 6 \, e^{\left (\frac {25 \, x}{25 \, x - 25 \, e^{4} + 21}\right )} + 9}{9 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.25, size = 45, normalized size = 1.67
method | result | size |
risch | \(\frac {1}{x^{2}}+\frac {{\mathrm e}^{-\frac {50 x}{25 \,{\mathrm e}^{4}-25 x -21}}}{9 x^{2}}+\frac {2 \,{\mathrm e}^{-\frac {25 x}{25 \,{\mathrm e}^{4}-25 x -21}}}{3 x^{2}}\) | \(45\) |
norman | \(\frac {\left (\frac {25 \,{\mathrm e}^{4}}{9}-\frac {7}{3}\right ) {\mathrm e}^{-\frac {50 x}{25 \,{\mathrm e}^{4}-25 x -21}}+\left (\frac {50 \,{\mathrm e}^{4}}{3}-14\right ) {\mathrm e}^{-\frac {25 x}{25 \,{\mathrm e}^{4}-25 x -21}}-25 x -\frac {50 \,{\mathrm e}^{-\frac {25 x}{25 \,{\mathrm e}^{4}-25 x -21}} x}{3}-\frac {25 \,{\mathrm e}^{-\frac {50 x}{25 \,{\mathrm e}^{4}-25 x -21}} x}{9}-21+25 \,{\mathrm e}^{4}}{x^{2} \left (25 \,{\mathrm e}^{4}-25 x -21\right )}\) | \(109\) |
derivativedivides | \(-\frac {\left (25 \,{\mathrm e}^{4}-21\right ) \left (-\frac {13781250 \left (-\frac {1}{1+\frac {25 \,{\mathrm e}^{4}-21}{-25 \,{\mathrm e}^{4}+25 x +21}}+\frac {1}{2 \left (1+\frac {25 \,{\mathrm e}^{4}-21}{-25 \,{\mathrm e}^{4}+25 x +21}\right )^{2}}\right )}{9765625 \,{\mathrm e}^{20}-41015625 \,{\mathrm e}^{16}+68906250 \,{\mathrm e}^{12}-57881250 \,{\mathrm e}^{8}+24310125 \,{\mathrm e}^{4}-4084101}+\frac {32812500 \,{\mathrm e}^{4} \left (-\frac {1}{1+\frac {25 \,{\mathrm e}^{4}-21}{-25 \,{\mathrm e}^{4}+25 x +21}}+\frac {1}{2 \left (1+\frac {25 \,{\mathrm e}^{4}-21}{-25 \,{\mathrm e}^{4}+25 x +21}\right )^{2}}\right )}{9765625 \,{\mathrm e}^{20}-41015625 \,{\mathrm e}^{16}+68906250 \,{\mathrm e}^{12}-57881250 \,{\mathrm e}^{8}+24310125 \,{\mathrm e}^{4}-4084101}-\frac {19531250 \,{\mathrm e}^{8} \left (-\frac {1}{1+\frac {25 \,{\mathrm e}^{4}-21}{-25 \,{\mathrm e}^{4}+25 x +21}}+\frac {1}{2 \left (1+\frac {25 \,{\mathrm e}^{4}-21}{-25 \,{\mathrm e}^{4}+25 x +21}\right )^{2}}\right )}{9765625 \,{\mathrm e}^{20}-41015625 \,{\mathrm e}^{16}+68906250 \,{\mathrm e}^{12}-57881250 \,{\mathrm e}^{8}+24310125 \,{\mathrm e}^{4}-4084101}\right )}{25}\) | \(265\) |
default | \(-\frac {\left (25 \,{\mathrm e}^{4}-21\right ) \left (-\frac {13781250 \left (-\frac {1}{1+\frac {25 \,{\mathrm e}^{4}-21}{-25 \,{\mathrm e}^{4}+25 x +21}}+\frac {1}{2 \left (1+\frac {25 \,{\mathrm e}^{4}-21}{-25 \,{\mathrm e}^{4}+25 x +21}\right )^{2}}\right )}{9765625 \,{\mathrm e}^{20}-41015625 \,{\mathrm e}^{16}+68906250 \,{\mathrm e}^{12}-57881250 \,{\mathrm e}^{8}+24310125 \,{\mathrm e}^{4}-4084101}+\frac {32812500 \,{\mathrm e}^{4} \left (-\frac {1}{1+\frac {25 \,{\mathrm e}^{4}-21}{-25 \,{\mathrm e}^{4}+25 x +21}}+\frac {1}{2 \left (1+\frac {25 \,{\mathrm e}^{4}-21}{-25 \,{\mathrm e}^{4}+25 x +21}\right )^{2}}\right )}{9765625 \,{\mathrm e}^{20}-41015625 \,{\mathrm e}^{16}+68906250 \,{\mathrm e}^{12}-57881250 \,{\mathrm e}^{8}+24310125 \,{\mathrm e}^{4}-4084101}-\frac {19531250 \,{\mathrm e}^{8} \left (-\frac {1}{1+\frac {25 \,{\mathrm e}^{4}-21}{-25 \,{\mathrm e}^{4}+25 x +21}}+\frac {1}{2 \left (1+\frac {25 \,{\mathrm e}^{4}-21}{-25 \,{\mathrm e}^{4}+25 x +21}\right )^{2}}\right )}{9765625 \,{\mathrm e}^{20}-41015625 \,{\mathrm e}^{16}+68906250 \,{\mathrm e}^{12}-57881250 \,{\mathrm e}^{8}+24310125 \,{\mathrm e}^{4}-4084101}\right )}{25}\) | \(265\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.69, size = 716, normalized size = 26.52 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.98, size = 24, normalized size = 0.89 \begin {gather*} \frac {{\left ({\mathrm {e}}^{\frac {25\,x}{25\,x-25\,{\mathrm {e}}^4+21}}+3\right )}^2}{9\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.36, size = 49, normalized size = 1.81 \begin {gather*} \frac {1}{x^{2}} + \frac {18 x^{2} e^{- \frac {25 x}{- 25 x - 21 + 25 e^{4}}} + 3 x^{2} e^{- \frac {50 x}{- 25 x - 21 + 25 e^{4}}}}{27 x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________