Optimal. Leaf size=31 \[ \log \left (\frac {e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )}{x \log (x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 19.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\log (x)+e^{e^{3 x}} \left (-2 e^5+\left (2-2 e^5+6 e^{5+3 x} x\right ) \log (x)+\left (2-6 e^{3 x} x\right ) \log ^2(x)\right )+e^{e^{3 x}} \left (-e^5+\left (1-e^5+3 e^{5+3 x} x\right ) \log (x)+\left (1-3 e^{3 x} x\right ) \log ^2(x)\right ) \log \left (-e^5+\log (x)\right )+\left (2 e^5+\left (-2+2 e^5\right ) \log (x)-2 \log ^2(x)+\left (e^5+\left (-1+e^5\right ) \log (x)-\log ^2(x)\right ) \log \left (-e^5+\log (x)\right )\right ) \log \left (2+\log \left (-e^5+\log (x)\right )\right )}{e^{e^{3 x}} \left (2 e^5 x \log (x)-2 x \log ^2(x)\right )+e^{e^{3 x}} \left (e^5 x \log (x)-x \log ^2(x)\right ) \log \left (-e^5+\log (x)\right )+\left (-2 e^5 x \log (x)+2 x \log ^2(x)+\left (-e^5 x \log (x)+x \log ^2(x)\right ) \log \left (-e^5+\log (x)\right )\right ) \log \left (2+\log \left (-e^5+\log (x)\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\log (x)+e^{e^{3 x}} \left (-2 e^5+\left (2-2 e^5+6 e^{5+3 x} x\right ) \log (x)+\left (2-6 e^{3 x} x\right ) \log ^2(x)\right )+e^{e^{3 x}} \left (-e^5+\left (1-e^5+3 e^{5+3 x} x\right ) \log (x)+\left (1-3 e^{3 x} x\right ) \log ^2(x)\right ) \log \left (-e^5+\log (x)\right )+\left (2 e^5+\left (-2+2 e^5\right ) \log (x)-2 \log ^2(x)+\left (e^5+\left (-1+e^5\right ) \log (x)-\log ^2(x)\right ) \log \left (-e^5+\log (x)\right )\right ) \log \left (2+\log \left (-e^5+\log (x)\right )\right )}{x \left (e^5-\log (x)\right ) \log (x) \left (2+\log \left (-e^5+\log (x)\right )\right ) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )} \, dx\\ &=\int \frac {\log (x)+2 e^{e^{3 x}} \left (e^5-\log (x)\right ) \left (-1+\left (-1+3 e^{3 x} x\right ) \log (x)\right )+e^{e^{3 x}} \left (e^5-\log (x)\right ) \left (-1+\left (-1+3 e^{3 x} x\right ) \log (x)\right ) \log \left (-e^5+\log (x)\right )+\left (e^5+\left (-1+e^5\right ) \log (x)-\log ^2(x)\right ) \left (2+\log \left (-e^5+\log (x)\right )\right ) \log \left (2+\log \left (-e^5+\log (x)\right )\right )}{x \left (e^5-\log (x)\right ) \log (x) \left (2+\log \left (-e^5+\log (x)\right )\right ) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )} \, dx\\ &=\int \left (\frac {3 e^{e^{3 x}+3 x}}{e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )}-\frac {2 e^{e^{3 x}}}{x \left (2+\log \left (-e^5+\log (x)\right )\right ) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )}+\frac {1}{x \left (e^5-\log (x)\right ) \left (2+\log \left (-e^5+\log (x)\right )\right ) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )}-\frac {2 e^{e^{3 x}}}{x \log (x) \left (2+\log \left (-e^5+\log (x)\right )\right ) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )}-\frac {e^{e^{3 x}} \log \left (-e^5+\log (x)\right )}{x \left (2+\log \left (-e^5+\log (x)\right )\right ) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )}-\frac {e^{e^{3 x}} \log \left (-e^5+\log (x)\right )}{x \log (x) \left (2+\log \left (-e^5+\log (x)\right )\right ) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )}+\frac {(1+\log (x)) \log \left (2+\log \left (-e^5+\log (x)\right )\right )}{x \log (x) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )}\right ) \, dx\\ &=-\left (2 \int \frac {e^{e^{3 x}}}{x \left (2+\log \left (-e^5+\log (x)\right )\right ) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )} \, dx\right )-2 \int \frac {e^{e^{3 x}}}{x \log (x) \left (2+\log \left (-e^5+\log (x)\right )\right ) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )} \, dx+3 \int \frac {e^{e^{3 x}+3 x}}{e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )} \, dx+\int \frac {1}{x \left (e^5-\log (x)\right ) \left (2+\log \left (-e^5+\log (x)\right )\right ) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )} \, dx-\int \frac {e^{e^{3 x}} \log \left (-e^5+\log (x)\right )}{x \left (2+\log \left (-e^5+\log (x)\right )\right ) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )} \, dx-\int \frac {e^{e^{3 x}} \log \left (-e^5+\log (x)\right )}{x \log (x) \left (2+\log \left (-e^5+\log (x)\right )\right ) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )} \, dx+\int \frac {(1+\log (x)) \log \left (2+\log \left (-e^5+\log (x)\right )\right )}{x \log (x) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )} \, dx\\ &=-\left (2 \int \frac {e^{e^{3 x}}}{x \left (2+\log \left (-e^5+\log (x)\right )\right ) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )} \, dx\right )-2 \int \frac {e^{e^{3 x}}}{x \log (x) \left (2+\log \left (-e^5+\log (x)\right )\right ) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )} \, dx+3 \int \frac {e^{e^{3 x}+3 x}}{e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )} \, dx+\int \frac {1}{x \left (e^5-\log (x)\right ) \left (2+\log \left (-e^5+\log (x)\right )\right ) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )} \, dx-\int \frac {e^{e^{3 x}} \log \left (-e^5+\log (x)\right )}{x \left (2+\log \left (-e^5+\log (x)\right )\right ) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )} \, dx-\int \frac {e^{e^{3 x}} \log \left (-e^5+\log (x)\right )}{x \log (x) \left (2+\log \left (-e^5+\log (x)\right )\right ) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )} \, dx+\int \left (\frac {\log \left (2+\log \left (-e^5+\log (x)\right )\right )}{x \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )}+\frac {\log \left (2+\log \left (-e^5+\log (x)\right )\right )}{x \log (x) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )}\right ) \, dx\\ &=-\left (2 \int \frac {e^{e^{3 x}}}{x \left (2+\log \left (-e^5+\log (x)\right )\right ) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )} \, dx\right )-2 \int \frac {e^{e^{3 x}}}{x \log (x) \left (2+\log \left (-e^5+\log (x)\right )\right ) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )} \, dx+3 \int \frac {e^{e^{3 x}+3 x}}{e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )} \, dx+\int \frac {1}{x \left (e^5-\log (x)\right ) \left (2+\log \left (-e^5+\log (x)\right )\right ) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )} \, dx-\int \frac {e^{e^{3 x}} \log \left (-e^5+\log (x)\right )}{x \left (2+\log \left (-e^5+\log (x)\right )\right ) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )} \, dx-\int \frac {e^{e^{3 x}} \log \left (-e^5+\log (x)\right )}{x \log (x) \left (2+\log \left (-e^5+\log (x)\right )\right ) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )} \, dx+\int \frac {\log \left (2+\log \left (-e^5+\log (x)\right )\right )}{x \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )} \, dx+\int \frac {\log \left (2+\log \left (-e^5+\log (x)\right )\right )}{x \log (x) \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.47, size = 33, normalized size = 1.06 \begin {gather*} -\log (x)-\log (\log (x))+\log \left (e^{e^{3 x}}-\log \left (2+\log \left (-e^5+\log (x)\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.93, size = 30, normalized size = 0.97 \begin {gather*} -\log \relax (x) + \log \left (-e^{\left (e^{\left (3 \, x\right )}\right )} + \log \left (\log \left (-e^{5} + \log \relax (x)\right ) + 2\right )\right ) - \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 41, normalized size = 1.32 \begin {gather*} -3 \, x + \log \left (-e^{\left (3 \, x\right )} \log \left (\log \left (-e^{5} + \log \relax (x)\right ) + 2\right ) + e^{\left (3 \, x + e^{\left (3 \, x\right )}\right )}\right ) - \log \relax (x) - \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 31, normalized size = 1.00
method | result | size |
risch | \(-\ln \relax (x )-\ln \left (\ln \relax (x )\right )+\ln \left (\ln \left (\ln \left (\ln \relax (x )-{\mathrm e}^{5}\right )+2\right )-{\mathrm e}^{{\mathrm e}^{3 x}}\right )\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 30, normalized size = 0.97 \begin {gather*} -\log \relax (x) + \log \left (-e^{\left (e^{\left (3 \, x\right )}\right )} + \log \left (\log \left (-e^{5} + \log \relax (x)\right ) + 2\right )\right ) - \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.10, size = 30, normalized size = 0.97 \begin {gather*} \ln \left (\ln \left (\ln \left (\ln \relax (x)-{\mathrm {e}}^5\right )+2\right )-{\mathrm {e}}^{{\mathrm {e}}^{3\,x}}\right )-\ln \left (\ln \relax (x)\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 11.97, size = 27, normalized size = 0.87 \begin {gather*} - \log {\relax (x )} + \log {\left (e^{e^{3 x}} - \log {\left (\log {\left (\log {\relax (x )} - e^{5} \right )} + 2 \right )} \right )} - \log {\left (\log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________